已知橢圓的長軸長為,離心率為分別為其左右焦點.一動圓過點,且與直線相切.

(1)求橢圓及動圓圓心軌跡的方程;

(2) 在曲線上有兩點、,橢圓上有兩點、,滿足共線,共線,且,求四邊形面積的最小值.

 

【答案】

(1),

(2)四邊形PMQN面積的最小值為8

【解析】

試題分析:解:(1)(ⅰ)由已知可得,

則所求橢圓方程.           3分

(ⅱ)由已知可得動圓圓心軌跡為拋物線,且拋物線的焦點為,準線方程為,則動圓圓心軌跡方程為.               5分

(2)當直線MN的斜率不存在時,,此時PQ的長即為橢圓長軸長,

從而            6分

設直線MN的斜率為k,則k≠0,直線MN的方程為:

直線PQ的方程為

,消去可得---8分

由拋物線定義可知:

9分

消去

從而                 10分

,∵

=,所以=>8           11分

所以四邊形PMQN面積的最小值為8                                  12分

考點:橢圓方程,軌跡方程

點評:主要是考查了軌跡方程的求解,以及聯(lián)立方程組結合韋達定理來求解面積,屬于基礎題。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知以F1(-2,0),F(xiàn)2(2,0)為焦點的橢圓與直線x+
3
y+4=0有且僅有一個交點,則橢圓的長軸長為( 。
A、3
2
B、2
6
C、2
7
D、4
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的長軸長為2a,焦點是F1(-
3
,0),F2(
3
,0)
,點F1到直線x=-
a2
3
的距離為
3
3
,過點F2且傾斜角為銳角的直線l與橢圓交于A,B兩點,使得
BF2
=3
F2A

(1)求橢圓的方程;
(2)求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

根據(jù)下列條件求橢圓或雙曲線的標準方程.
(Ⅰ)已知橢圓的長軸長為6,一個焦點為(2,0),求該橢圓的標準方程.
(Ⅱ)已知雙曲線過點P(
5
,
1
2
)
,漸近線方程為x±2y=0,且焦點在x軸上,求該雙曲線的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(選修4-4:坐標系與參數(shù)方程)
已知橢圓的長軸長為6,焦距F1F2=4
2
,過橢圓左焦點F1作一直線,交橢圓于兩點M、N,設∠F2F1M=α(0≤α<π),當α為何值時,MN與橢圓短軸長相等?(用極坐標或參數(shù)方程方程求解)

查看答案和解析>>

科目:高中數(shù)學 來源:黑龍江省大慶鐵人中學2012屆高三上學期期末考試數(shù)學理科試題 題型:044

已知橢圓的長軸長為4,且點在橢圓上.

(Ⅰ)求橢圓的方程;

(Ⅱ)過橢圓右焦點的直線l交橢圓于A,B兩點,若以AB為直徑的圓過原點,求直線l方程.

查看答案和解析>>

同步練習冊答案