分析 (Ⅰ)先利用正弦定理把a和b的表達式代入acosB+bcosA中,利用了兩角和公式化簡整理,求得acosB+bcosA=2RsinC,進而把2RsinC轉化成邊,原式得證.
(Ⅱ)利用正弦定理化簡已知等式,利用兩角和與差的正弦函數(shù)公式及誘導公式化簡,根據(jù)sinC不為0求出cosA的值,即可確定出A的度數(shù),進而利用三角形面積公式即可計算得解.
解答 解:(Ⅰ)證明:∵由正弦定理得:$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}=2R$,
∴左=acosB+bcosA=2RsinAcosB+2RsinBcosA=2Rsin(B+A)=2RsinC=c=右,
原式得證.
(Ⅱ)由(2c-b)cosA=acosB及正弦定理得(2sinC-sinB)cosA=sinAcosB,
得2sinCcosA=sinAcosB+cosAsinB=sin(A+B),
∵A+B+C=π,
∴sin(A+B)=sinC≠0,
∴cosA=$\frac{1}{2}$,
∵A為三角形的內(nèi)角,
∴A=$\frac{π}{3}$.
∵b=1,c=2,
∴S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}×1×2×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$.
點評 本題主要考查了正弦定理,兩角和與差的正弦函數(shù)公式,誘導公式,以及特殊角的三角函數(shù)值,熟練掌握正弦定理是解本題的關鍵,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{2}{3}$ | B. | -$\frac{3}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①③ | B. | ①④ | C. | ②③ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com