9.△ABC中,內(nèi)角A,B,C所對的變分別是a,b,c.
(Ⅰ)求證:acosB+bcosA=c;
(Ⅱ)已知(2c-b)cosA=acosB,且b=1,c=2,求△ABC的面積.

分析 (Ⅰ)先利用正弦定理把a和b的表達式代入acosB+bcosA中,利用了兩角和公式化簡整理,求得acosB+bcosA=2RsinC,進而把2RsinC轉化成邊,原式得證.
(Ⅱ)利用正弦定理化簡已知等式,利用兩角和與差的正弦函數(shù)公式及誘導公式化簡,根據(jù)sinC不為0求出cosA的值,即可確定出A的度數(shù),進而利用三角形面積公式即可計算得解.

解答 解:(Ⅰ)證明:∵由正弦定理得:$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}=2R$,
∴左=acosB+bcosA=2RsinAcosB+2RsinBcosA=2Rsin(B+A)=2RsinC=c=右,
原式得證.
(Ⅱ)由(2c-b)cosA=acosB及正弦定理得(2sinC-sinB)cosA=sinAcosB,
得2sinCcosA=sinAcosB+cosAsinB=sin(A+B),
∵A+B+C=π,
∴sin(A+B)=sinC≠0,
∴cosA=$\frac{1}{2}$,
∵A為三角形的內(nèi)角,
∴A=$\frac{π}{3}$.
∵b=1,c=2,
∴S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}×1×2×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$.

點評 本題主要考查了正弦定理,兩角和與差的正弦函數(shù)公式,誘導公式,以及特殊角的三角函數(shù)值,熟練掌握正弦定理是解本題的關鍵,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.在極坐標系中,曲線C的極坐標方程為ρ=2cosθ+2sinθ(0≤θ<2π),點M(1,$\frac{π}{2}$),以極點O為原點,以極軸為x軸的正半軸建立平面直角坐標系.已知直線l:$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù))與曲線C交于A,B兩點,且|MA|>|MB|.
(1)若P(ρ,θ)為曲線C上任意一點,求ρ的最大值,并求此時點P的極坐標;
(2)求$\frac{|MA|}{|MB|}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.cos3tan4的值(  )
A.小于0B.大于0C.等于0D.不存在

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=lnx-$\frac{1}{2}$ax2+bx+1的圖象在x=1處的切線l過點($\frac{1}{2}$,$\frac{1}{2}$).
(1)若函數(shù)g(x)=f(x)-(a-1)x(a>0),求g(x)最大值(用a表示);
(2)若a=-4,f(x1)+f(x2)+x1+x2+3x1x2=2,證明:x1+x2≥$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.如圖所示程序框圖的算法思路源于我國古代數(shù)學名著《九章算術》中的“更相減損術”,執(zhí)行該程序框圖,若輸入a,b分別為8,18,則輸出的a等于( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若直線l過點A(-1,1),B(2,-1),則l的斜率為( 。
A.-$\frac{2}{3}$B.-$\frac{3}{2}$C.$\frac{2}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.如圖所示,正方體ABCD-A′B′C′D′的棱長為1,E、F分別是棱AA′,CC′的中點,過直線EF的平面分別與棱BB′,DD′交于M,N,給出以下四個命題:
①平面MENF一定為矩形;
②平面MENF⊥平面BDD′B′;
③當M為BB1的中點時,MENF的面積最;
④四棱錐A-MENF的體積為常數(shù).
以上命題中正確命題的序號為②③④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.如圖(Ⅰ)是反映某條公共汽車線路收支差額y與乘客量x之間關系的圖象,由于目前該條公交線路虧損,公司有關人員提出兩種調整建議,如圖(Ⅱ)(Ⅲ)所示(注:收支差額=營業(yè)所得的票價收入-付出的成本)
給出以下說法:①圖(Ⅱ)的建議是:提高成本,并提高票價;
②圖(Ⅱ)的建議是:降低成本,并保持票價不變;
③圖(Ⅲ)的建議是:提高票價,并降低成本;
④圖(Ⅲ)的建議是:提高票價,并保持成本不變.
其中說法正確的序號是( 。
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)$f(x)=x+\frac{a^2}{x}$,g(x)=x+lnx,其中a>0.
(Ⅰ)當a=2時,求函數(shù)f(x)的單調遞減區(qū)間;
(Ⅱ)若對任意的x1,x2∈[1,e](e為自然對數(shù)的底數(shù))都有f(x1)≥g(x2)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案