10.二項(xiàng)式(x+$\frac{\sqrt{x}}{{x}^{3}}$)8的展開(kāi)式中含x項(xiàng)的系數(shù)為28.

分析 利用通項(xiàng)公式即可得出.

解答 解:二項(xiàng)式(x+$\frac{\sqrt{x}}{{x}^{3}}$)8的展開(kāi)式中的通項(xiàng)公式:Tr+1=${∁}_{8}^{r}$x8-r$(\frac{\sqrt{x}}{{x}^{3}})^{r}$=${∁}_{8}^{r}$${x}^{8-\frac{7r}{2}}$.
令8-$\frac{7r}{2}$=1,解得r=2.
∴含x項(xiàng)的系數(shù)=${∁}_{8}^{2}$=28.
故答案為:28.

點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的通項(xiàng)公式及其性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.為了研究學(xué)生的數(shù)學(xué)核素養(yǎng)與抽象(能力指標(biāo)x)、推理(能力指標(biāo)y)、建模(能力指標(biāo)z)的相關(guān)性,并將它們各自量化為1、2、3三個(gè)等級(jí),再用綜合指標(biāo)w=x+y+z的值評(píng)定學(xué)生的數(shù)學(xué)核心素養(yǎng);若w≥7,則數(shù)學(xué)核心素養(yǎng)為一級(jí);若5≤w≤6,則數(shù)學(xué)核心素養(yǎng)為二級(jí);若3≤w≤4,則數(shù)學(xué)核心素養(yǎng)為三級(jí),為了了解某校學(xué)生的數(shù)學(xué)核素養(yǎng),調(diào)查人員隨機(jī)訪問(wèn)了某校10名學(xué)生,得到如下結(jié)果:
學(xué)生編號(hào)A1A2A3A4A5A6A7A8A9A10
(x,y,z)(2,2,3)(3,2,3)(3,3,3)(1,2,2)(2,3,2)(2,3,3)(2,2,2)(2,3,3)(2,1,1)(2,2,2)
(1)在這10名學(xué)生中任取兩人,求這兩人的建模能力指標(biāo)相同的概率;
(2)從數(shù)學(xué)核心素養(yǎng)等級(jí)是一級(jí)的學(xué)生中任取一人,其綜合指標(biāo)為a,從數(shù)學(xué)核心素養(yǎng)等級(jí)不是一級(jí)的學(xué)生中任取一人,其綜合指標(biāo)為b,記隨機(jī)變量X=a-b,求隨機(jī)變量X的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖1所示,在等腰梯形ABCD中,$BE⊥AD,BC=3,AD=15,BE=3\sqrt{3}$.把△ABE沿BE折起,使得$AC=6\sqrt{2}$,得到四棱錐A-BCDE.如圖2所示.

(1)求證:面ACE⊥面ABD;
(2)求平面ABE與平面ACD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知F為拋物線C:x2=2py(p>0)的焦點(diǎn),過(guò)F的直線l與C交于A,B兩點(diǎn),M為AB中點(diǎn),點(diǎn)M到x軸的距離為d,|AB|=2d+1.
(1)求p的值;
(2)過(guò)A,B分別作C的兩條切線l1,l2,l1∩l2=N.請(qǐng)選擇x,y軸中的一條,比較M,N到該軸的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若y=sin($\frac{π}{2}$+x),則y′=-sinx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),按逆時(shí)針?lè)较蜓刂荛L(zhǎng)為1的平面圖形運(yùn)動(dòng)一周,A,P兩點(diǎn)間的距離y與動(dòng)點(diǎn)P所走過(guò)的路程x的關(guān)系如圖所示,那么動(dòng)點(diǎn)P所走的圖形可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)f(x)=ex(-x2+2x+a)在區(qū)間[a,a+1]上單調(diào)遞增,則實(shí)數(shù)a的最大值為$\frac{-1+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=(x2+x)lnx+2x3+(1-a)x2-(a+1)x+b(a,b∈R).
(Ⅰ)當(dāng)a=3時(shí),若函數(shù)f(x)存在零點(diǎn),求實(shí)數(shù)b的取值范圍;
(Ⅱ)若f(x)≥0恒成立,求b-2a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.2016年11月,第十一屆中國(guó)(珠海)國(guó)際航空航天博覽會(huì)開(kāi)幕式當(dāng)天,殲-20的首次亮相給觀眾留下了極深的印象.某參賽國(guó)展示了最新研制的兩種型號(hào)的無(wú)人機(jī),先從參觀人員中隨機(jī)抽取100人對(duì)這兩種型號(hào)的無(wú)人機(jī)進(jìn)行評(píng)價(jià),評(píng)價(jià)分為三個(gè)等級(jí):優(yōu)秀、良好、合格.由統(tǒng)計(jì)信息可知,甲型號(hào)無(wú)人機(jī)被評(píng)為優(yōu)秀的頻率為$\frac{3}{5}$、良好的頻率為$\frac{2}{5}$;乙型號(hào)無(wú)人機(jī)被評(píng)為優(yōu)秀的頻率為$\frac{7}{10}$,且被評(píng)為良好的頻率是合格的頻率的5倍.
(1)求這100人中對(duì)乙型號(hào)無(wú)人機(jī)評(píng)為優(yōu)秀和良好的人數(shù);
(2)如果從這100人中按對(duì)甲型號(hào)無(wú)人機(jī)的評(píng)價(jià)等級(jí)用分層抽樣的方法抽取5人,然后從其他對(duì)乙型號(hào)無(wú)人機(jī)評(píng)優(yōu)秀、良好的人員中各選取1人進(jìn)行座談會(huì),會(huì)后從這7人中隨機(jī)抽取2人進(jìn)行現(xiàn)場(chǎng)操作體驗(yàn)活動(dòng),求進(jìn)行現(xiàn)場(chǎng)操作體驗(yàn)活動(dòng)的2人都評(píng)優(yōu)秀的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案