10.集合{-1,0,1}共有7個非空子集.

分析 確定集合的元素個數(shù),其子集個數(shù)為2n個,非空子集2n-1個.

解答 解:由題意:集合{-1,0,1},共有3個元素,
∴非空子集23-1=7個.
故答案為:7.

點評 本題主要考查利用集合子集個數(shù)判斷集合元素個數(shù)的應(yīng)用,含有n個元素的集合,其子集個數(shù)為2n個,非空子集2n-1個.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,向量$\overrightarrow{m}$=(a,c),$\overrightarrow{n}$=(1-2cosA,2cosC-1),$\overrightarrow{m}∥\overrightarrow{n}$
(Ⅰ)若b=5,求a+c值;
(Ⅱ)若$tan\frac{B}{2}=\frac{1}{2}$,且角A是△ABC中最大內(nèi)角,求角A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=kx+b的圖象過原點,且f(2)=-4.
(1)求f(x)的解析式.  
(2)當(dāng)x∈[0,3]時,求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.高斯函數(shù)[x]表示不超過x的最大整數(shù),通常稱為x的整數(shù)部分,比如[3.14]=3,[-2.16]=-3,則$[{(2+\sqrt{3})^5}]$=723.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某企業(yè)共有3 200名職工,其中,中、青、老年職工的比例為5:3:2,從所有職工中抽取一個容量為400的樣本,采用哪種抽樣方法更合理?中、青、老年職工應(yīng)分別抽取多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)f(x)=$\frac{2}{\sqrt{3x+1}}$的定義域為(-$\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,公路AM、AN圍成的是一塊頂角為α的角形耕地,其中tanα=-2.在該塊土地中P處有一小型建筑,經(jīng)測量,它到公路AM,AN的距離分別為3km,$\sqrt{5}$km.現(xiàn)要過點P修建一條直線公路BC,將三條公路圍成的區(qū)域ABC建成一個工業(yè)園.
(1)現(xiàn)有兩種方案:
①方案一:以A為原點,AB為x軸,建立平面直角坐標(biāo)系,
設(shè)直線BC的斜率為k,把△ABC的面積S表示為關(guān)于k的函數(shù);
②方案二:設(shè)AB=x,AC=y,把△ABC的面積S表示為x、y關(guān)系式,并說明x、y滿足的關(guān)系.
(2)任選一種方案,確定B點的位置,使得該工業(yè)園區(qū)的面積最。坎⑶笞钚∶娣e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知二次函數(shù)f(x)=ax2+bx+c,其中a>0.
(1)若方程f(x)+2x=0有兩個實根x1=1,x2=3,且方程f(x)+6a=0有兩個相等的根,求f(x)的解析式; 
(2)若f(x)的圖象與x軸交于A(-3,0)B(m,0)兩點,且當(dāng)-1≤x≤0時,f(x)≤0恒成立.求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)函數(shù)f(x)=(x-1)2-alnx,a∈R.
(1)若曲線y=f(x)在點(1,f(1))處的切線與直線x+2y-1=0垂直,求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案