3.函數(shù)f(x)=xex在點(-1,f(-1))處的切線方程為y=-$\frac{1}{e}$.

分析 求出f(x)的導數(shù),運用導數(shù)的幾何意義,可得切線的斜率和切點,由點斜式方程可得切線的方程.

解答 解:f(x)=xex的導數(shù)為f′(x)=(x+1)ex
可得在點(-1,f(-1))處的切線斜率為k=0,
切點為(-1,-$\frac{1}{e}$),
即有在點(-1,f(-1))處的切線方程為y=-$\frac{1}{e}$.
故答案為:y=-$\frac{1}{e}$.

點評 本題考查導數(shù)的運用:求切線的方程,考查導數(shù)的幾何意義,正確求導和運用直線方程是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

9.求值:$\frac{(\sqrt{3}tan12°-3)csc12°}{4co{s}^{2}12°-2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.化簡:π<α<$\frac{3π}{2}$,$\frac{1+sinα}{\sqrt{1+cosα}-\sqrt{1-cosα}}$+$\frac{1-sinα}{\sqrt{1+cosα}+\sqrt{1-cosα}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則這個幾何體是( 。
A.三棱錐B.三棱柱C.四棱錐D.四棱柱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知函數(shù)f(x)=x2+4lnx,若存在滿足1≤x0≤4的實數(shù)x0,使得曲線y=f(x)在點(x0,f(x0))處的切線與直線x+my-2=0垂直,則實數(shù)m的取值范圍是[4$\sqrt{2}$,9].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知函數(shù)f(x)=x2-ax的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,記數(shù)列$\{\frac{1}{f(n)}\}$的前n項和為Sn,則S2016的值為$\frac{2016}{2017}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.函數(shù)f(x)=$\frac{x}{{e}^{x}}$在點(1,f(1))處的切線方程是y=$\frac{1}{e}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{a}{x}$+blnx,曲線y=f(x)在點(1,f(1))處的切線方程為y=x.
(I)求函數(shù)f(x)的單調(diào)區(qū)間及極值;
(Ⅱ)對?x≥1,f(x)≤kx,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.執(zhí)行如圖所示的程序框圖,若輸出的n的值為7,則輸入的T的最大值為( 。
A.339B.212C.190D.108

查看答案和解析>>

同步練習冊答案