7.已知點A(5,2$\sqrt{2}$),F(xiàn)(1,0),動點P在拋物線y2=4x上運動,則|PA|2+|PF|2的最小值為18$.\end{array}$.

分析 設P(x,y),表示出|PA|2+|PF|2,利用導數(shù)求最值.

解答 解:設P(x,y),則
t=|PA|2+|PF|2=(x-5)2+(y-2$\sqrt{2}$)2+(x-1)2+y2=(x2-10x+25)+(4x-4$\sqrt{2}$$•2\sqrt{x}$+8)+(x2-2x+1)+4x
=2x2-4x+34-4$\sqrt{2}$$•2\sqrt{x}$,
∴t′=4x-4-$\frac{4\sqrt{2}}{\sqrt{x}}$,
函數(shù)在(0,2)上單調(diào)遞減,(2,+∞)上單調(diào)遞增,
∴x=2時,函數(shù)取得最小值18,
故答案為:18.

點評 本題考查直線與拋物線的位置關(guān)系,考查導數(shù)知識的運用,正確求出|PA|2+|PF|2是關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

17.設全集U=R,集合M={x|-2≤x≤2},N={x|x<1},則M∩∁UN=(  )
A.{x|1<x≤2}B.{x|1≤x≤2}C.{x|x<1}D.{x|-2≤x<1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.高斯函數(shù)[x]表示不超過x的最大整數(shù),通常稱為x的整數(shù)部分,比如[3.14]=3,[-2.16]=-3,則$[{(2+\sqrt{3})^5}]$=723.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.函數(shù)f(x)=$\frac{2}{\sqrt{3x+1}}$的定義域為(-$\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,公路AM、AN圍成的是一塊頂角為α的角形耕地,其中tanα=-2.在該塊土地中P處有一小型建筑,經(jīng)測量,它到公路AM,AN的距離分別為3km,$\sqrt{5}$km.現(xiàn)要過點P修建一條直線公路BC,將三條公路圍成的區(qū)域ABC建成一個工業(yè)園.
(1)現(xiàn)有兩種方案:
①方案一:以A為原點,AB為x軸,建立平面直角坐標系,
設直線BC的斜率為k,把△ABC的面積S表示為關(guān)于k的函數(shù);
②方案二:設AB=x,AC=y,把△ABC的面積S表示為x、y關(guān)系式,并說明x、y滿足的關(guān)系.
(2)任選一種方案,確定B點的位置,使得該工業(yè)園區(qū)的面積最?并求最小面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.關(guān)于函數(shù)f(x)=sinx(sinx-cosx)的有關(guān)性質(zhì),下列敘述正確的是( 。
A.f(x)的最小正周期為2πB.f(x)在[-$\frac{π}{2}$,$\frac{π}{2}$]內(nèi)單調(diào)遞增
C.f(x)的圖象關(guān)于(-$\frac{π}{2}$,0)對稱D.f(x)的圖象關(guān)于x=$\frac{π}{8}$對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知二次函數(shù)f(x)=ax2+bx+c,其中a>0.
(1)若方程f(x)+2x=0有兩個實根x1=1,x2=3,且方程f(x)+6a=0有兩個相等的根,求f(x)的解析式; 
(2)若f(x)的圖象與x軸交于A(-3,0)B(m,0)兩點,且當-1≤x≤0時,f(x)≤0恒成立.求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知橢圓C;$\frac{x^2}{4}+\frac{y^2}$=1(0<b<4)的左右頂點分別為A、B,M為橢圓上的任意一點,A關(guān)于M的對稱點為P,如圖所示,
(1)若M的橫坐標為$\frac{1}{2}$,且點P在橢圓的右準線上,求b的值;
(2)若以PM為直徑的圓恰好經(jīng)過坐標原點O,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知f(x)=($\frac{1}{{a}^{x}-1}$+$\frac{1}{2}$)x3(a>0,且a≠1).
(1)討論f(x)的奇偶性;
(2)求a的取值范圍,使f(x)>0在定義域上恒成立.

查看答案和解析>>

同步練習冊答案