17.已知f(x)=($\frac{1}{{a}^{x}-1}$+$\frac{1}{2}$)x3(a>0,且a≠1).
(1)討論f(x)的奇偶性;
(2)求a的取值范圍,使f(x)>0在定義域上恒成立.

分析 (1)依題意,可得函數(shù)f(x)的定義域為{x|x≠0},利用函數(shù)奇偶性的定義可判斷出f(-x)=f(x),從而可知f(x)的奇偶性;
(2)由(1)知f(x)為偶函數(shù),故只需討論x>0時的情況,依題意,當(dāng)x>0時,由f(x)>0恒成立,即可求得a的取值范圍.

解答 解:(1)由于ax-1≠0,則ax≠1,得x≠0,
所以函數(shù)f(x)的定義域為{x|x≠0}.
對于定義域內(nèi)任意x,有
f(-x)=($\frac{1}{{a}^{-x}-1}$+$\frac{1}{2}$)(-x)3=($\frac{{a}^{x}}{1{-a}^{x}}$+$\frac{1}{2}$)•(-x)3
=($\frac{{-a}^{x}}{1{-a}^{x}}$-$\frac{1}{2}$)•x3=($\frac{{(1-a}^{x})-1}{1{-a}^{x}}$-$\frac{1}{2}$)•x3=($\frac{1}{{a}^{x}-1}$+$\frac{1}{2}$)x3=f(x),
∴f(x)是偶函數(shù).
(2)由(1)知f(x)為偶函數(shù),∴只需討論x>0時的情況.
當(dāng)x>0時,要使f(x)>0,即($\frac{1}{{a}^{x}-1}$+$\frac{1}{2}$)x3>0,
即$\frac{{a}^{x}+1}{{2(a}^{x}-1)}$>0,即ax-1>0,ax>1.
又∵x>0,∴a>1.
因此a>1時f(x)>0.

點評 本題考查函數(shù)恒成立問題,考查函數(shù)奇偶性的判定及性質(zhì)的應(yīng)用,考查推理運算能力,判斷f(x)是偶函數(shù)是關(guān)鍵,也是難點,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知點A(5,2$\sqrt{2}$),F(xiàn)(1,0),動點P在拋物線y2=4x上運動,則|PA|2+|PF|2的最小值為18$.\end{array}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知:U=R,A={x|-1<x≤4},B={x|-3<x≤3},求A∩B,A∩∁UB,(∁UA)∪B,(∁UA)∪(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點分別為F1(-c,0),F(xiàn)2(c,0).若雙曲線上存在點P,使PF1=2PF2,則該雙曲線的離心率的取值范圍是(1,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.?dāng)?shù)列{an}滿足:a1=1,且對任意的m,n∈N*都有:an+m=an+am+nm,則a100=5050.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如果函數(shù)f(x)=ax(ax-3a2-1)(a>0且a≠1)在區(qū)間(-∞,0]上是減函數(shù),那么實數(shù)a的取值范圍是(  )
A.$(0,\frac{{\sqrt{3}}}{3}]$B.$(0,\frac{{\sqrt{3}}}{3}]∪$(1,+∞)C.$[\frac{{\sqrt{3}}}{3},1)$D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,已知sinA=$\frac{2}{3}$,cosB=$\frac{1}{2}$,則 cosC的值為$\frac{2\sqrt{3}-\sqrt{5}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知x,y,z∈R*,滿足x-2y+3z=0,則$\frac{{y}^{2}}{xz}$的最小值是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某班學(xué)生父母年齡的莖葉圖如圖,左邊是父親年齡,右邊是母親年齡,則該班同學(xué)父親的平均年齡比母親的平均年齡大( 。
A.2.7歲B.3.1歲C.3.2歲D.4歲

查看答案和解析>>

同步練習(xí)冊答案