16.已知f(x)是R上的偶函數(shù),且在(-∞,0]上為減函數(shù),若$f(3)-f(\frac{1}{2}a-1)<0$,求實(shí)數(shù)a的取值范圍.

分析 根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系,將不等式進(jìn)行等價轉(zhuǎn)化即可.

解答 解:∵f(x)是R上的偶函數(shù),且在(-∞,0]上為減函數(shù),
∴函數(shù)f(x)在[0,+∞)為增函數(shù),
若$f(3)-f(\frac{1}{2}a-1)<0$,
則f(3)<f($\frac{1}{2}a-1$),
即等價f(3)<f(|$\frac{1}{2}a-1$|),
∴|$\frac{1}{2}a-1$|>3,
即$\frac{1}{2}a-1$>3或$\frac{1}{2}a-1$<-3,
解得a>8或a<-4.

點(diǎn)評 本題主要考查不等式的求解,利用函數(shù)奇偶性和單調(diào)性之間的關(guān)系進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.過點(diǎn)A(-1,-2)且到原點(diǎn)距離為1的直線方程為x=-1或3x-4y-5=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知不等式x2+bx+x>0的解集為{x|x<-2或x>-1}.
(1)求b和c的值.
(2)求不等式cx2+bx+a≤0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知A是三角形的一個內(nèi)角,
(1)若tanA=2,求$\frac{sin(π-A)+cos(-A)}{{sinA-sin(\frac{π}{2}+A)}}$的值.
(2)若sinA+cosA=$\frac{1}{5}$,求sinA-cosA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)$f(x)=-\frac{2}{x+1}$在(2,+∞)上的最小值是(  )
A.-2B.$-\frac{2}{3}$C.$-\frac{3}{2}$D.無最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知數(shù)列{an}是遞增數(shù)列,且滿足an=2n2+λn,則實(shí)數(shù)λ的取值范圍是( 。
A.(0,+∞)B.(-4,+∞)C.[-4,+∞)D.(-6,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知集合A={x|-2≤x≤5},B={x|m-1<x≤m+2}.
(Ⅰ)當(dāng)m=-2時,求A∩B和A∪B;
(Ⅱ)若B⊆A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=3lnx-2f′(1)x在點(diǎn)x=1處的切線方程為y=x-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.定義:對于函數(shù)f(x),若在定義域內(nèi)存在實(shí)數(shù)x,滿足f(-x)=-f(x),則稱f(x)為“局部奇函數(shù)”.
(1)已知二次函數(shù)f(x)=ax2+2x-4a(a∈R),試判斷f(x)是否為定義域R上的“局部奇函數(shù)”?若是,求出滿足f(-x)=-f(x)的x的值;若不是,請說明理由;
(2)若f(x)=2x+m是定義在區(qū)間[-1,1]上的“局部奇函數(shù)”,求實(shí)數(shù)m的取值范圍.
(3)若f(x)=4x-m•2x+1+m2-3為定義域R上的“局部奇函數(shù)”,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案