15.某市一次全市高中男生身高統(tǒng)計(jì)調(diào)查數(shù)據(jù)顯示:全市100 000名男生的身高服從正態(tài)分布N(168,16).現(xiàn)從某學(xué)校高三年級(jí)男生中隨機(jī)抽取50名測(cè)量身高,測(cè)量發(fā)現(xiàn)被測(cè)學(xué)生身高全部介于160cm和184cm之間,將測(cè)量結(jié)果按如下方式分成6組:第一組[160,164],第二組[164,168],組方法得到的頻率分布直方圖.
(Ⅰ)試評(píng)估該校高三年級(jí)男生在全市高中男生中的平均身高狀況;
(Ⅱ)求這50名男生身高在172cm以上(含172cm)的人數(shù);
(Ⅲ)在這50名男生身高在172cm以上(含172cm)的人中任意抽取2人,該2人中身高排名(從高到低)在全市前130名的人數(shù)記為ξ,求ξ的數(shù)學(xué)期望.
參考數(shù)據(jù):
若ξ-N(μ+σ2).則
p(μ-σ<ξ≤μ+σ)=0.6826,
p(μ-2σ<ξ≤μ+2σ)=0.9544,
p(μ-3σ<ξ≤μ+3σ)=0.9974.

分析 (I)高三男生的平均身高用組中值×頻率,即可得到結(jié)論;
(II)首先理解頻數(shù)分布直方圖橫縱軸表示的意義,橫軸表示身高,縱軸表示頻數(shù),即:每組中包含個(gè)體的個(gè)數(shù).我們可以依據(jù)頻數(shù)分布直方圖,了解數(shù)據(jù)的分布情況,知道每段所占的比例,從而求出求這50名男生身高在172cm以上(含172cm)的人數(shù).
(III)先根據(jù)正態(tài)分布的規(guī)律求出全市前130名的身高在180 cm以上,這50人中180 cm以上的有2人,確定ξ的可能取值,求出其概率,即可得到ξ的分布列與期望.

解答 (本題滿(mǎn)分為12分)
解:(Ⅰ)由直方圖,經(jīng)過(guò)計(jì)算該校高三年級(jí)男生平均身高為:(162×$\frac{5}{100}$+166×$\frac{7}{100}+170×\frac{8}{100}+174×\frac{2}{100}+178×$$\frac{2}{100}$+182×$\frac{1}{100}$)×4=168.72.
高于全市的平均值168(或者:經(jīng)過(guò)計(jì)算該校高三年級(jí)男生平均身高為168.72,比較接近全市的平均值168).…(4分)
(Ⅱ)由頻率分布直方圖知,后三組頻率為(0.02+0.02+0.01)×4=0.2,人數(shù)為0.2×5=10,
即這50名男生身高在172 cm以上(含172 cm)的人數(shù)為10人.…(6分)
(Ⅲ)∵P(168-3×4<ξ<168+3×4)=0.9974,
∴P(ξ≥180)=$\frac{1-0.9974}{2}$=0.0013,0.0013×100 000=130.
所以,全市前130名的身高在180 cm以上,這50人中180 cm以上的有2人.
隨機(jī)變量ξ可取0,1,2,于是:P(ξ=0)=$\frac{{C}_{8}^{2}}{{C}_{10}^{2}}$=$\frac{28}{45}$,P(ξ=1)=$\frac{{{C}_{8}^{1}C}_{2}^{1}}{{C}_{10}^{2}}$=$\frac{16}{45}$,P(ξ=2)=$\frac{{C}_{2}^{2}}{{C}_{10}^{2}}$=$\frac{1}{45}$,
∴Eξ=0×$\frac{28}{45}$+1×$\frac{16}{45}$+2×$\frac{1}{45}$=$\frac{2}{5}$.…(12分)

點(diǎn)評(píng) 此題主要考查了正態(tài)分布,考查隨機(jī)變量的定義及其分布列,并考查了利用分布列求其期望.正確理解頻數(shù)分布直方圖橫縱軸表示的意義,由頻數(shù)分布直方圖可以得到什么結(jié)論是學(xué)習(xí)中需要掌握的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.將二進(jìn)制數(shù)10101(2)化為四進(jìn)制數(shù),結(jié)果為111(4);918與714的最大公約數(shù)為102.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若圓x2+y2-4x-4y-10=0上至少有三個(gè)不同點(diǎn)到直線l:x-y+b=0的距離為$2\sqrt{2}$,則b的取值范圍是( 。
A.[-2,2]B.[-10,10]C.(-∞,-10]∪[10,+∞)D.(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.不等式$\frac{1}{x}>2$的解集為( 。
A.$(-∞,\frac{1}{2})$B.(-∞,0)C.$(0,\frac{1}{2})$D.$(\frac{1}{2},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)函數(shù)f(x)=$\frac{1}{3}$x3-ax2+bx的圖象與直線3x+3y-8=0相切于點(diǎn)(2,f(2)).
(1)求a,b的值;
(2)求函數(shù)f(x)區(qū)間[-2,2]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)f(x)=$\frac{2}{{{2^x}+1}}$+a,x∈R,a為常數(shù).
(1)若f(x)為奇函數(shù),求a;
(2)判斷f(x)在R上的單調(diào)性,并用單調(diào)性的定義予以證明.
(3)在(1)的條件下,不等式f(x2-3x)+f(x-m+1)≤0對(duì)x≥0恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.國(guó)內(nèi)某大學(xué)有男生6000人,女生4000人,該校想了解本校學(xué)生的運(yùn)動(dòng)狀況,根據(jù)性別采取分層抽樣的方法從全校學(xué)生中抽取100人,調(diào)查他們平均每天運(yùn)動(dòng)的時(shí)間(單位:小時(shí)),統(tǒng)計(jì)表明該校學(xué)生平均每天運(yùn)動(dòng)的時(shí)間范圍是[0,3],若規(guī)定平均每天運(yùn)動(dòng)的時(shí)間不少于2小時(shí)的學(xué)生為“運(yùn)動(dòng)達(dá)人”,低于2小時(shí)的學(xué)生為“非運(yùn)動(dòng)達(dá)人”.根據(jù)調(diào)查的數(shù)據(jù)按性別與“是否為‘運(yùn)動(dòng)達(dá)人’”進(jìn)行統(tǒng)計(jì),得到如下2×2列聯(lián)表:
運(yùn)動(dòng)時(shí)間
性別
運(yùn)動(dòng)達(dá)人非運(yùn)動(dòng)達(dá)人合計(jì)
男生36
女生26
合計(jì)100
(1)請(qǐng)根據(jù)題目信息,將2×2列聯(lián)表中的數(shù)據(jù)補(bǔ)充完整,并通過(guò)計(jì)算判斷能否在犯錯(cuò)誤概率不超過(guò)0.025的前提下認(rèn)為性別與“是否為‘運(yùn)動(dòng)達(dá)人’”有關(guān);
(2)為了進(jìn)一步了解學(xué)生的運(yùn)動(dòng)情況及體能,對(duì)樣本中的甲、乙兩位運(yùn)動(dòng)達(dá)人男生1500米的跑步成績(jī)進(jìn)行測(cè)試,對(duì)多次測(cè)試成績(jī)進(jìn)行統(tǒng)計(jì),得到甲1500米跑步成績(jī)的時(shí)間范圍是[4,5](單位:分鐘),乙1500米跑步成績(jī)的時(shí)間范圍是[4.5,5.5](單位:分鐘),現(xiàn)同時(shí)對(duì)甲、乙兩人進(jìn)行1500米跑步測(cè)試,求乙比甲跑得快的概率.
附表及公式:
 P(K2≥k0 0.150.10 0.05 0.025 0.010 
 k0 2.0722.706 3.841  5.0246.635
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知a,b>0且a+b=2,求證:$\sqrt{2a+1}$+$\sqrt{2b+1}$≤2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知a,b∈Z,“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是“若a+b不是偶數(shù),則a,b不都是奇數(shù)”.

查看答案和解析>>

同步練習(xí)冊(cè)答案