在銳角△ABC中,已知A=2B,則的取值范圍是________.

答案:
解析:

  答案:()

  思路分析:解決該問題的關(guān)鍵是挖掘出各內(nèi)角的范圍.因?yàn)槭卿J角三角形,

  所以0°<A<90°,即0°<B<45°.

  又C=180°-3B,所以0°<C<90°,

  即0°<180°-3B<90°.可得30°<B<60°,所以30°<B<45°.

  因此cosB的范圍是().而所求利用正弦定理可化為=2cosB,

  所以的范圍是().


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,已知BC=1,B=2A
(1)求
ACcosA
的值;
(2)求AC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,已知內(nèi)角A、B、C所對的邊分別為a、b、c,且滿足2sinBcosB=-
3
cos2B

(1)求B的大小;
(2)如果b=
7
a=2,求△ABC的面積S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,已知a、b、c分別是三內(nèi)角A、B、C所對應(yīng)的邊長,且b=2asinB.
(1)求角A的大。       
(2)若b=1,且△ABC的面積為
3
3
4
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,已知內(nèi)角A、B、C所對的邊分別為a、b、c,且滿足2sinB(2cos2
B
2
-1)=-
3
cos2B.
(1)求B的大;
(2)如果b=2,求△ABC的面積S△ABC的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,已知cosA=
1
2
,BC=
3
,記△ABC的周長為f(B).
(1)求函數(shù)y=f(B)的解析式和定義域,并化簡其解析式;
(2)若f(B)=
3
+
6
,求f(B-
π
2
)
的值.

查看答案和解析>>

同步練習(xí)冊答案