設A,B分別是直線y=
2
5
5
x
y=-
2
5
5
x
上的兩個動點,并且|
AB
|=
20
,動點P滿足
OP
=
OA
+
OB
.記動點P的軌跡為C.
(I) 求軌跡C的方程;
(Ⅱ)若點D的坐標為(0,16),M、N是曲線C上的兩個動點,且
DM
DN
,求實數(shù)λ的取值范圍.
( I) 設P(x,y),
為A、B分別為直線y=
2
5
5
x
y=-
2
5
5
x
上的點,
故可設A(x1,
2
5
5
x1)
B(x2,-
2
5
5
x2)

OP
=
OA
+
OB
,
x=x1+x2
y=
2
5
5
(x1-x2)
,
x1+x2=x
x1-x2=
5
2
y
,…(4分)
|
AB
|=
20
,
(x1-x2)2+
4
5
(x1+x2)2=20
.…(5分)
5
4
y2+
4
5
x2=20
. 
即曲線C的方程為
x2
25
+
y2
16
=1
.…(6分)
( II) 設N(s,t),M(x,y),
則由
DM
DN
,
可得(x,y-16)=λ (s,t-16).
故x=λs,y=16+λ (t-16).…(8分)
∵M、N在曲線C上,
s2
25
+
t2
16
=1
λ2s2
25
+
(λt-16λ+16)2
16
=1.
…(10分)
消去s得  
λ2(16-t2)
16
+
(λt-16λ+16)2
16
=1

由題意知λ≠0,且λ≠1,
解得t=
17λ-15
.…(12分)
又|t|≤4,
|
17λ-15
|≤4

解得  
3
5
≤λ≤
5
3
(λ≠1).
故實數(shù)λ的取值范圍是
3
5
≤λ≤
5
3
(λ≠1).…(14分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設A、B分別是直線y=
2
5
5
x和y=-
2
5
5
x上的兩個動點,并且|
AB
|=
20
,動點P滿足
OP
=
OA
+
OB
,記動點P的軌跡為C,求軌跡C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•東城區(qū)一模)設A,B分別是直線y=
2
5
5
x
y=-
2
5
5
x
上的兩個動點,并且|
AB
|=
20
,動點P滿足
OP
=
OA
+
OB
.記動點P的軌跡為C.
(I) 求軌跡C的方程;
(Ⅱ)若點D的坐標為(0,16),M、N是曲線C上的兩個動點,且
DM
DN
,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(文科)設A、B分別是直線y=
2
5
5
x
y=-
2
5
5
x
上的兩個動點,并且|
AB
|=
20
,滿足
OP
=
OA
+
OB
.(1)求動點P的軌跡C的方程;
(2)若點D的坐標為(0,16),M、N是曲線C上的兩個動點,且
DM
DN
(λ≠1),求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•東城區(qū)一模)設A,B分別是直線y=
2
5
5
x
y=-
2
5
5
x
上的兩個動點,并且|
AB
|=
20
,動點P滿足
OP
=
OA
+
OB
.記動點P的軌跡為C.
(Ⅰ)求軌跡C的方程;
(Ⅱ)M,N是曲線C上的任意兩點,且直線MN不與y軸垂直,線段MN的中垂線l交y軸于點E(0,y0),求y0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設A,B分別是直線y=
2
5
5
x
y=-
2
5
5
x
上的兩個動點,并且|
AB
|=
20
,動點P滿足
OP
=
OA
+
OB
,記動點P的軌跡為C.
(1)求曲線C的方程;
(2)若點D的坐標為(0,16),M,N是曲線C上的兩個動點,并且
DM
DN
,求實數(shù)λ的取值范圍;
(3)M,N是曲線C上的任意兩點,并且直線MN不與y軸垂直,線段MN的中垂線l交y軸于點E(0,y0),求y0的取值范圍.

查看答案和解析>>

同步練習冊答案