【題目】已知橢圓 的右準(zhǔn)線方程為,又離心率為,橢圓的左頂點(diǎn)為,上頂點(diǎn)為,點(diǎn)為橢圓上異于任意一點(diǎn).

(1)求橢圓的方程;

(2)若直線軸交于點(diǎn),直線軸交于點(diǎn)求證: 為定值.

【答案】(1) (2)見解析

【解析】試題分析:(1)利用橢圓的準(zhǔn)線方程和離心率即可求解;(2)設(shè)出點(diǎn)的坐標(biāo),寫出的直線方程,求出點(diǎn)的坐標(biāo),利用兩點(diǎn)間的距離公式和點(diǎn)在橢圓上進(jìn)行化簡求解.

試題解析:1橢圓的右準(zhǔn)線方程為 離心率為

橢圓的方程為: ;

(2)方法(一)設(shè)點(diǎn) ,則, ,即

當(dāng)時, ,則,

點(diǎn)異于點(diǎn)

當(dāng)時,設(shè)直線方程為: ,它與軸交于點(diǎn)

直線方程為: ,它與軸交于點(diǎn)

,

為定值.

方法(二)若直線斜率不存在,則直線方程為: ,此時,則,

若直線斜率存在,設(shè)直線方程為: ,且

則聯(lián)立方程: 得: ,解得: ,

即點(diǎn) 點(diǎn)異于點(diǎn)

直線的方程為: ,

為定值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+c與x軸交于A、B兩點(diǎn),頂點(diǎn)為C,點(diǎn)P在拋物線上,且位于x軸下方

(1)如下圖,若P(1,-3)、B(4,0),① 求該拋物線的解析式;② 若D是拋物線上一點(diǎn),滿足∠DPO=∠POB,求點(diǎn)D的坐標(biāo);

(2) 如下圖,在圖中的拋物線解析式不變的條件下,已知直線PA、PB與y軸分別交于E、F兩點(diǎn).當(dāng)點(diǎn)P運(yùn)動時,OE+OF是否為定值?若是,試求出該定值;若不是,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】自平面上一點(diǎn)O引兩條射線OA,OB,P在OA上運(yùn)動,Q在OB上運(yùn)動且保持| |為定值2 (P,Q不與O重合).已知∠AOB=120°,
(I)PQ的中點(diǎn)M的軌跡是的一部分(不需寫具體方程);
(II)N是線段PQ上任﹣點(diǎn),若|OM|=1,則 的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[2019·朝鮮中學(xué)]在如圖所示的程序框圖中,有這樣一個執(zhí)行框,其中的函數(shù)關(guān)系式為,程序框圖中的為函數(shù)的定義域.

(1)若輸入,請寫出輸出的所有的值;

(2)若輸出的所有都相等,試求輸入的初始值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了讓學(xué)生更多地了解“數(shù)學(xué)史”知識,某班級舉辦一次“追尋先哲的足跡,傾聽數(shù)學(xué)的聲音的數(shù)學(xué)史知識競賽活動.現(xiàn)將初賽答卷成績(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),制成如下頻率分布表:

序號

分?jǐn)?shù)段

人數(shù)

頻率

1

10

0.20

2

0.44

3

4

4

0.08

合計(jì)

50

1

(1)填充上述表中的空格(在解答中直接寫出對應(yīng)空格序號的答案);

(2)若利用組中值近似計(jì)算數(shù)據(jù)的平均數(shù),求此次數(shù)學(xué)史初賽的平均成績;

(3)甲同學(xué)的初賽成績在,學(xué)校為了宣傳班級的學(xué)習(xí)經(jīng)驗(yàn),隨機(jī)抽取分?jǐn)?shù)在的4位同學(xué)中的兩位同學(xué)到學(xué)校其他班級介紹,求甲同學(xué)被抽取到的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直四棱柱的所有棱長均為2, 中點(diǎn).

(Ⅰ)求證: 平面;

(Ⅱ)若,求平面與平面所成銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓的方程為,過點(diǎn)的直線與圓交于點(diǎn),與軸交于點(diǎn),設(shè),求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個焦點(diǎn)分別為, ,且經(jīng)過點(diǎn).

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)的頂點(diǎn)都在橢圓上,其中關(guān)于原點(diǎn)對稱,試問能否為正三角形?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)定義域?yàn)?/span>,若對于任意的,都有,且時,有.

(1)判斷并證明函數(shù)的奇偶性;

(2)判斷并證明函數(shù)的單調(diào)性;

(3)設(shè),若,對所有恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案