【題目】已知拋物線:,直線截拋物線所得弦長為.
(1)求的值;
(2)若直角三角形的三個頂點在拋物線上,且直角頂點的橫坐標為1,過點、分別作拋物線的切線,兩切線相交于點.
①若直線經(jīng)過點,求點的縱坐標;
②求的最大值及此時點的坐標.
【答案】(1)(2)①-3.②最大值見解析,
【解析】
(1)聯(lián)立,求出交點,利用兩點距離公式列方程求解即可;
(2)①設(shè)點,,,切線:,:,化歸為二次方程的根的問題,可得直線的方程,代入點,即可得點的縱坐標;②由題設(shè)知,即,利用面積公式表示出,利用函數(shù)的性質(zhì)求其最值.
解:(1),解得兩交點為,.
所以,.
(2)①設(shè)點,,.切線:,:,
由題設(shè)知,,
即,是方程的兩根,于是,.
故直線:.又因為直線經(jīng)過點,
所以,即點的縱坐標為-3;
②由題設(shè)知,即.
則,
若,令,,
若,令,,
當且僅當,時,等號成立,此時點的坐標為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,過橢圓: 的左右焦點分別作直線, 交橢圓于與,且.
(1)求證:當直線的斜率與直線的斜率都存在時, 為定值;
(2)求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】斜三棱柱ABC﹣A1B1C1,已知側(cè)面BB1C1C與底面ABC垂直且∠BCA=90°,∠B1BC=60°,BC=BB1=2,若二面角A﹣B1B﹣C為30°
(1)求AB1與平面BB1C1C所成角的正切值;
(2)在平面AA1B1B內(nèi)找一點P,使三棱錐P﹣BB1C為正三棱錐,并求P到平面BB1C距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,圓的普通方程為.在以坐標原點為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為.
(1)寫出圓的參數(shù)方程和直線的直角坐標方程;
(2)設(shè)點在上,點Q在上,求的最小值及此時點的直角坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在①;②;③ 這三個條件中任選一個,補充在下面問題中的橫線上,并解答相應(yīng)的問題.
在中,內(nèi)角A,B,C的對邊分別為a,b,c,且滿足________________,,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分13分)
已知函數(shù),(其中),其部分圖像如圖所示.
(I)求的解析式;
(II)求函數(shù)在區(qū)間上的最大值及相應(yīng)的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已過拋物線:的焦點作直線交拋物線于,兩點,以,兩點為切點作拋物線的切線,兩條直線交于點.
(1)當直線平行于軸時,求點的坐標;
(2)當時,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com