若雙曲線x2-y2=a2(a>0)的右焦點(diǎn)與拋物線y2=4x的焦點(diǎn)重合,則a=
 
考點(diǎn):拋物線的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:先根據(jù)拋物線y2=4x的方程求出焦點(diǎn)坐標(biāo),得到雙曲線的c值,進(jìn)而根據(jù)雙曲線的性質(zhì)得到答案.
解答: 解:拋物線y2=4x的焦點(diǎn)坐標(biāo)為(1,0),
故雙曲線x2-y2=a2(a>0)的右焦點(diǎn)坐標(biāo)為(1,0),
故c=1,
由雙曲線x2-y2=a2的標(biāo)準(zhǔn)方程為:
x2
a2
-
y2
a2
=1
,
故2a2=1,
又由a>0,
∴a=
2
2

故答案為:
2
2
點(diǎn)評(píng):本題主要考查圓錐曲線的基本元素之間的關(guān)系問題,同時(shí)雙曲線、橢圓的相應(yīng)知識(shí)也進(jìn)行了綜合性考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

正項(xiàng)數(shù)列{an}中,a1=4,an+an2=2(an+1)an-1(n≥2),則它的前10項(xiàng)之和S10=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,BC,CA,AB邊上,分別有3.4.5個(gè)點(diǎn)(不包括△ABC的頂點(diǎn))
(1)從三條邊上的12個(gè)點(diǎn)中取3個(gè)點(diǎn)構(gòu)成三角形,這樣的三角形共有多少個(gè)?
(2)若同△ABC的3個(gè)頂點(diǎn)共15個(gè)點(diǎn)中取出3點(diǎn)構(gòu)成三角形,這樣的三角形共多少個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+ca≠0,x∈R滿足條件:
①x≤f(x)≤
1
2
(1+x2),
②f(-1+x)=f(-1-x);
③f(x)在R上的最小值為0.
(Ⅰ)求f(1)的值;
(Ⅱ)求f(x)的解析式;
(Ⅲ)求最大值m(m>1),使得存在t∈R,只要x∈[1,m],都有f(x+t)≤x成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1且焦距是實(shí)軸長(zhǎng)的2倍,有個(gè)焦點(diǎn)與拋物線y2=4x的焦點(diǎn)重合,求該雙曲線的標(biāo)準(zhǔn)方程式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩個(gè)單位向量
a
,
b
的夾角為30°,
c
=t
a
+
b
d
=
a
-t
b
.若
c
d
=0,則正實(shí)數(shù)t=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,已知圓x2+(y-3)2=4的圓心為C,過點(diǎn)P(1,0)的直線與圓C交于不同的兩點(diǎn)A,B 若|AB|=2
3
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2-2x,x≥0
-x2-2x,x<0
,則它們的單調(diào)增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有5名同學(xué)站成一排照相,則甲與乙且甲與丙都相鄰的不同排法種數(shù)是( 。
A、8B、12C、36D、48

查看答案和解析>>

同步練習(xí)冊(cè)答案