【題目】如圖,正三棱柱(底面為正三角形,側(cè)棱和底面垂直)的所有棱長(zhǎng)都為2,的中點(diǎn),O中點(diǎn).

1)求證:平面.

2)求平面與平面所成銳二面角的余弦值.

【答案】1)證明見解析;(2.

【解析】

(1)推導(dǎo)出,,,由此能證明平面.

(2)設(shè)中點(diǎn)為,取O為原點(diǎn),分別取,,x,y,z軸,建立空間直角坐標(biāo)系,利用向量法能求出平面與平面所成銳二面角的余弦值.

證明:(1)∵是正三角形,O中點(diǎn),∴,

∵在正三棱錐中,平面平面,

平面平面,

平面,∴,

∵正方形中,,

,

,

,∴平面.

解:(2)設(shè)中點(diǎn)為,

由(1)知可取O為原點(diǎn),分別取,,x,y,z軸,建立空間直角坐標(biāo)系,

,,,,,

,,,

平面.是平面的一個(gè)法向量,

設(shè)平面的法向量,

,取,得,

設(shè)平面與平面所成銳二面角為,

,

∴平面與平面所成銳二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若的導(dǎo)函數(shù),討論的單調(diào)性;

(2)若是自然對(duì)數(shù)的底數(shù)),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一段“三段論”,其推理是這樣的:對(duì)于可導(dǎo)函數(shù),若,則是函數(shù)的極值點(diǎn),因?yàn)楹瘮?shù)滿足,所以是函數(shù)的極值點(diǎn)”,結(jié)論以上推理  

A. 大前提錯(cuò)誤B. 小前提錯(cuò)誤C. 推理形式錯(cuò)誤D. 沒有錯(cuò)誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)求圓的普通方程和直線的直角坐標(biāo)方程;

(2)若直線與圓交于兩點(diǎn),是圓上不同于兩點(diǎn)的動(dòng)點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

如圖4,在四棱錐中,底面是矩形,

平面,,于點(diǎn)

(1) 求證:;

(2) 求直線與平面所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解某學(xué)校高二年級(jí)學(xué)生的物理成績(jī),從中抽取名學(xué)生的物理成績(jī)百分制作為樣本,按成績(jī)分成5組:,頻率分布直方圖如圖所示,成績(jī)落在中的人數(shù)為20

男生

女生

合計(jì)

優(yōu)秀

不優(yōu)秀

合計(jì)

1的值;

2根據(jù)樣本估計(jì)總體的思想,估計(jì)該校高二學(xué)生物理成績(jī)的平均數(shù)和中位數(shù);

3成績(jī)?cè)?0分以上含80分為優(yōu)秀,樣本中成績(jī)落在中的男、女生人數(shù)比為1:2,成績(jī)落在中的男、女生人數(shù)比為3:2,完成列聯(lián)表,并判斷是否所有95%的把握認(rèn)為物理成績(jī)優(yōu)秀與性別有關(guān)

參考公式和數(shù)據(jù):

050

005

0025

0005

0455

3841

5024

7879

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)為雙曲線上的兩點(diǎn),為線段的中點(diǎn),線段的垂直平分線與雙曲線交于、兩點(diǎn)

(1)確定的取值范圍

(2)試判斷、、、四點(diǎn)是否共圓?并說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中.

1)若,求函數(shù)的單調(diào)區(qū)間;

2)若關(guān)于的不等式對(duì)任意的實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍;

3)若函數(shù)個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)從某學(xué)校高二年級(jí)男生中隨機(jī)抽取名測(cè)量身高,測(cè)量發(fā)現(xiàn)被測(cè)學(xué)生身高全部介于之間,將測(cè)量結(jié)果按如下方式分成組:第,第,,第,下圖是按上述分組方法得到的頻率分布直方圖.

1)估計(jì)這名男生身高的中位數(shù)和平均數(shù);

2)求這名男生當(dāng)中身高不低于的人數(shù),若在這名身高不低于的男生中任意抽取人,求這人身高之差不大于的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案