1.設(shè)集合A={2,3,a2+2a-3},B={a+3,2},若5∈A,且5∉B,則實(shí)數(shù)a的值為( 。
A.2或-4B.-4C.2D.4

分析 由已知可得a2+2a-3=5,a+3≠5,解得答案.

解答 解:∵集合A={2,3,a2+2a-3},B={a+3,2},
若5∈A,且5∉B,
則a2+2a-3=5,a+3≠5,
解得:a=-4,
故選:B.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是元素與集合關(guān)系的判斷,難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=$\frac{x+sinx}{2{x}^{2}+cosx}$+2的最大值為M,最小值為N,則M+N的值是( 。
A.0B.2C.4D.4或-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f(x)=$\left\{\begin{array}{l}{(3a-1)x+4a,x<1}\\{{a}^{x-1},x≥1}\end{array}\right.$,對(duì)任意x1,x2∈R,都有(x1-x2)[f(x1)-f(x2)]<0,則實(shí)數(shù)a的取值范圍是( 。
A.(0,1)B.($\frac{2}{7}$,$\frac{1}{3}$)C.[$\frac{2}{7}$,$\frac{1}{3}$)D.[$\frac{2}{7}$,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知等差數(shù)列{an}共有40項(xiàng),且$\frac{{S}_{奇}}{{S}_{偶}}$=$\frac{3}{5}$,公差d=2,則a1=-35.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.比較下列各組數(shù)的大小.
(1)(-1.1)${\;}^{\frac{3}{5}}$,(-1.1)${\;}^{\frac{5}{7}}$;
(2)1.9,-1.9-3;
(3)0.7${\;}^{2-\sqrt{3}}$,0.70.3;
(4)0.60.4,0.40.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.解關(guān)于x的不等式:ax2-(a+1)x+1<0(a>0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.求和:12-32+52-72+…+(-1)n+1(2n-1)2=$\left\{\begin{array}{l}{-2{n}^{2},n為偶數(shù)}\\{2{n}^{2}-1,n為奇數(shù)}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=x-$\frac{a}{x}$.
(1)若f(x)在(1,+∞)上為增函數(shù),求a的取值范圍.
(2)當(dāng)x∈(0,+∞)時(shí),f(x)≥2恒成立,求a的取值范圍.
(3)當(dāng)x∈(1,+∞),x2-mx+4>0恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)f(x)=asin(πx+θ)+bcos(πx+θ),其中a,b,θ為非零實(shí)數(shù).若f(2008)=-1,求f(2009)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案