A. | 2 | B. | 3 | C. | $3\sqrt{2}$ | D. | 4 |
分析 如圖所示,可得:$m<-\frac{\sqrt{2}}{2}$a<n<0.由f(m)=f(n),可得m2-$\frac{1}{2}{a}^{2}$=-$({n}^{2}-\frac{1}{2}{a}^{2})$,即m2+n2=a2.利用點(diǎn)到直線的距離公式可得:原點(diǎn)O到直線直線$\sqrt{3}x+y-10=0$的距離5.根據(jù)點(diǎn)P(m,n)到直線$\sqrt{3}x+y-10=0$的最大距離為8時(shí),即可得出a.
解答 解:如圖所示
可得:$m<-\frac{\sqrt{2}}{2}$a<n<0.
∵f(m)=f(n),
∴m2-$\frac{1}{2}{a}^{2}$=-$({n}^{2}-\frac{1}{2}{a}^{2})$,
化為:m2+n2=a2.圓心為原點(diǎn)O.
原點(diǎn)O到直線直線$\sqrt{3}x+y-10=0$的距離d=$\frac{10}{\sqrt{(\sqrt{3})^{2}+{1}^{2}}}$=5.
∵點(diǎn)P(m,n)到直線$\sqrt{3}x+y-10=0$的最大距離為8,即5+a=8時(shí),a=3.
故選:B.
點(diǎn)評 本題考查了二次函數(shù)的圖象與性質(zhì)、點(diǎn)到直線的距離公式、直線與圓的位置關(guān)系,考查了數(shù)形結(jié)合方法、推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | -1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0.25 | B. | 0.35 | C. | 0.6 | D. | 0.75 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com