一個空間幾何體的三視圖如圖所示(單位:m),則該幾何體的體積(單位m3)為(  )
A、
7
2
B、
9
2
C、
7
3
D、
9
4
考點:由三視圖求面積、體積
專題:空間位置關系與距離
分析:由已知中的三視圖可得:該幾何體是一個以正視圖為底面的棱柱,求出底面面積和高,代入棱柱體積公式,可得答案.
解答: 解:由已知中的三視圖可得:該幾何體是一個以正視圖為底面的棱柱,
棱柱的底面面積S=
1
2
(2+3)×1+1=
7
2
,
高h=1,
故棱柱的體積V=Sh=
7
2
,
故選:A
點評:本題考查的知識點由三視圖求體積和表面積,其中根據(jù)已知中的三視圖,判斷出幾何體的形狀,是解答的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設二次函數(shù)f(x)=-x2+x+a(a<0),若f(m)>0,則f(m+1)的值為( 。
A、正數(shù)B、負數(shù)
C、非負數(shù)D、正數(shù)、負數(shù)或零都有可能

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

二次函數(shù)f(x)=ax2+bx+c(a≠0)滿足條件:①f(0)=-1;②對任x∈R,均有f(x-4)=f(2-x);③函數(shù)f(x)的圖象與函數(shù)g(x)=x-1的圖象相切.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)當且僅當x∈[4,m](m>4)時,f(x-t)≤g(x)恒成立,試求t,m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若1,a1,a2,4成等差數(shù)列;1,b1,b2,b3,4成等比數(shù)列,則
a1-a2
b2
的值等于( 。
A、-
1
2
B、
1
2
C、±
1
2
D、
1
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求下列函數(shù)的單調區(qū)間.
(1)函數(shù)f(x)=x+
a
x
(a>0)(x>0);
(2)函數(shù)y=
x2+x-6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(-6,-1),B(2,5),則以線段AB為直徑的圓的標準方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若直線l1:(2a+3)x+(a-1)y+3=0與l2:(a+2)x+(1-a)y-3=0平行,則實數(shù)a的值為( 。
A、l
B、-
5
3
C、1或-
5
3
D、1或-l

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知(x,y)在映射f的作用下的像是(x+y,xy),(-2,3)在f作用下的像是
 
.(2,-3)在f作用下的原像是
 
..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=
f(x-3),x>0
2x-x3,x≤0
,則f[f(5)]=( 。
A、-3B、1C、-1D、4

查看答案和解析>>

同步練習冊答案