7.已知圓C與y軸相切,圓心在直線x-2y=0上,且被x軸的正半軸截得的弦長為2$\sqrt{3}$.
(Ⅰ)求圓C的方程;
(Ⅱ)若點(x,y)在圓C上,求x+2y的最大值.

分析 (Ⅰ)設圓心(2m,m),半徑為r(m>0,r>0),由已知條件列出方程組,求出m=1,r=2,由此能求出圓C的方程.
(Ⅱ)設x+2y=t,由題意得直線x+2y=t與圓C相交或相切,當t=x+2y取最大值時,直線x+2y-t=0與圓相切,由此能求出x+2y的最大值.

解答 解:(Ⅰ)設圓心(2m,m),半徑為r(m>0,r>0),
由題意得$\left\{\begin{array}{l}{r=2m}\\{(\sqrt{3})^{2}+{m}^{2}=4{m}^{2}}\end{array}\right.$,解得m=1,r=2,
∴圓C的方程為(x-2)2+(y-1)2=4.
(Ⅱ)設x+2y=t,
由題意得直線x+2y=t與圓C相交或相切,
當t=x+2y取最大值時,直線x+2y-t=0與圓相切,
∴圓心(2,1)到直線x+2y=t的距離d滿足:
d=$\frac{|2+2-t|}{\sqrt{5}}$=2,
解得t=4-2$\sqrt{5}$或t=4+2$\sqrt{5}$.
∴x+2y的最大值為4+2$\sqrt{5}$.

點評 本題考查圓的方程的求法,考查代數(shù)式的最大值的求法,是中檔題,解題時要認真審題,注意圓的性質、點到直線的距離公式的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.下列說法正確的是( 。
A.a∈R,“$\frac{1}{a}$<1”是“a>1”的必要不充分條件
B.“p∧q為真命題”是“p∨q為真命題”的必要不充分條件
C.命題“?x∈R使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3>0”
D.命題p:“?x∈R,sinx+cosx≤$\sqrt{2}$”,則¬p是真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知:x∈(0,$\frac{1}{2}$),則$\frac{2}{x}$+$\frac{9}{1-2x}$的最小值為25.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.給出下列5個關系:①{0}∈{0,1,2};②∅?{0};③{0,1,2}⊆{1,2,0};④0∈∅;⑤1∈{x|x⊆{1,2}},其中正確的有(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.某地地震,為了安置廣大災民,抗震救災指揮部決定建造一批簡易房(每套長方體狀,房高2.5米),前后墻用2.5米高的彩色鋼板,兩側用2.5米高的復合鋼板,兩種鋼板的價格都用長度來計算(即:鋼板的高均為2.5米,用鋼板的長度乘以單價就是這塊鋼板的價格),每米單價:彩色鋼板為450元,復合鋼板為200元.房頂用其它材料建造,每平方米材料費為200元.每套房建筑面積100平方米,試計算:
(1)設房前面墻的長為x,兩側墻的長為y,所用材料費為p,試用x,y表示p;
(2)求簡易房造價S的最小值是多少?并求S最小時,前面墻的長度應設計為多少米?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.設點A1(-$\sqrt{2}$,0)和點A2($\sqrt{2}$,0),直線A1M、A2M相交于點M,且它們的斜率之積是-$\frac{1}{2}$.設M的軌跡為C,過點F(1,0)作直線l交C于P、Q兩點.
(1)求點M的軌跡方程;
(2)求|PQ|的最小值;
(3)是否存在點N,使得以線段PQ為直徑的圓過該定點,若存在,求出定點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.若函數(shù)f(x)=(4-x2)(ax2+bx+5)的圖象關于直線$x=-\frac{3}{2}$對稱,則f(x)的最大值是36.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若點A、B為圓(x-2)2+y2=25上的兩點,點P(3,-1)為弦AB的中點,則弦AB所在的直線方程為x-y-4=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知正三角形ABC的邊長為2,D、E、F分別是BC、CA、AB的中點.
(1)在三角形內部隨機取一點P,求滿足|PB|≥1且|PC|≥1的概率;
(2)在A、B、C、D、E、F這6點中任選3點,記這3點圍成圖形的面積為ξ,求隨機變量ξ的分布列與數(shù)學期望Eξ.

查看答案和解析>>

同步練習冊答案