14.已知數(shù)列{an}為等差數(shù)列,${a}_{1}^{2}$+${a}_{2}^{2}$=1,Sn為{an}的前n項(xiàng)和,則S5的取值范圍是(  )
A.[-$\frac{15}{2}$$\sqrt{2}$,$\frac{15}{2}$$\sqrt{2}$]B.[-5$\sqrt{5}$,5$\sqrt{5}$]C.[-10,10]D.[-5$\sqrt{3}$,5$\sqrt{3}$]

分析 設(shè)a1=cosθ,a2=sinθ,公差d=sinθ-cosθ,可得S5=5$\sqrt{5}$sin(θ-φ),其中tanφ=$\frac{1}{2}$,由三角函數(shù)的知識(shí)可得.

解答 解:∵數(shù)列{an}為等差數(shù)列,${a}_{1}^{2}$+${a}_{2}^{2}$=1,
∴可設(shè)a1=cosθ,a2=sinθ,公差d=sinθ-cosθ,
則S5=5cosθ+$\frac{5×4}{2}$(sinθ-cosθ)=10sinθ-5cosθ
=5$\sqrt{5}$sin(θ-φ),其中tanφ=$\frac{1}{2}$,
∴由三角函數(shù)可知S5的取值范圍是[-5$\sqrt{5}$,5$\sqrt{5}$],
故選:B.

點(diǎn)評(píng) 本題考查等差數(shù)列的求和公式,三角換元并利用輔助角公式是解決問(wèn)題的關(guān)鍵,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.己知△ABC內(nèi)一點(diǎn)P滿足$\overrightarrow{AP}=\frac{1}{2}\overrightarrow{AB}$+$\frac{1}{8}$$\overrightarrow{AC}$,過(guò)點(diǎn)P的直線分別交邊AB、AC于M、N兩點(diǎn),若$\overrightarrow{AM}=λ\overrightarrow{AB}$,$\overrightarrow{AN}=μ\overrightarrow{AC}$,則λ+μ的最小值為$\frac{9}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)是定義在R上的函數(shù),若函數(shù)f(x+2016)為偶函數(shù),且f(x)對(duì)任意x1,x2∈[2016,+∞)(x1≠x2),都有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0,則( 。
A.f(2019)<f(2014)<f(2017)B.f(2017)<f(2014)<f(2019)
C.f(2014)<f(2017)<f(2019)D.f(2019)<f(2017)<f(2014)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=x($\frac{1}{{3}^{x}-1}$+$\frac{1}{2}$).
(1)求f(x)的定義域;
(2)討論f(x)的奇偶性;
(3)求證:f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.點(diǎn)M(x,y)滿足不等組$\left\{\begin{array}{l}{3x-y-6≤0}\\{x-y+2≥0}\\{x≥0,y≥0}\end{array}\right.$,點(diǎn)P($\frac{1}{a}$,$\frac{1}$)(a>0,b>0),若$\overrightarrow{OP}$•$\overrightarrow{OM}$的最大值為6,則3a+b的最小值為( 。
A.4$\sqrt{2}$B.9C.3+2$\sqrt{2}$D.3$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,在△OAB中,已知P為線段AB上的一點(diǎn).|$\overrightarrow{OA}$|=4,|$\overrightarrow{OB}$|=3,且$\overrightarrow{OA}$與$\overrightarrow{OB}$的夾角為60°.
(1)若$\overrightarrow{BP}$=3$\overrightarrow{PA}$,求$\overrightarrow{OP}$•$\overrightarrow{AB}$的值;
(2)若$\overrightarrow{BP}$=λ$\overrightarrow{PA}$,求當(dāng)OP⊥AB時(shí)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)y=f(x)的圖象向左平移$\frac{π}{4}$個(gè)單位后與函數(shù)g(x)=$\sqrt{3}$sinxcosx-sin(2x-$\frac{π}{6}$)的圖象重合.已知△ABC中三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.
(1)求f(x)的最小正周期T和單調(diào)遞增區(qū)間;
(2)若f(A)=$\frac{1}{2}$,tanC=$\sqrt{2}$,c=$\sqrt{6}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知$\left\{\begin{array}{l}{2x+y-2≥0}\\{x-2y+4≥0}\\{3x-y-3≤0}\end{array}\right.$,求z=|2x+y+5|的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.在等差數(shù)列中,a5=7,d=2,那么這個(gè)數(shù)列中a1=-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案