1.在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且 a=2,b=3,c=4,則$\frac{sin2C}{sinA}$=-1.

分析 由正弦定理先求得sinC=2sinA,由余弦定理cosC=-$\frac{1}{4}$,代入所求即可求解.

解答 解:在△ABC中,由正弦定理可得:sinA:sinB:sinC=2:3:4
故有:sinC=2sinA
由余弦定理:cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{4+9-16}{12}$=-$\frac{1}{4}$,
∴$\frac{sin2C}{sinA}$=$\frac{2sinCcosC}{sinA}$=$\frac{2×2sinA×(-\frac{1}{4})}{sinA}$=-1.
故答案為:-1.

點(diǎn)評(píng) 此題考查了正弦定理,二倍角的正弦函數(shù)公式在解三角形中的應(yīng)用,熟練掌握正弦定理是解本題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知tanx=$\frac{4}{3}$(π<x<$\frac{3}{2}$π),則cos(2x-$\frac{π}{3}$)cos($\frac{π}{3}$-x)-sin(2x-$\frac{π}{3}$)•sin($\frac{π}{3}$-x)=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知集合A={x|x2-5x+6≤0},B={x∈Z|2x>1},則A∩B=( 。
A.[2,3]B.(0,+∞)C.(0,2)∪(3,+∞)D.(0,2]∪[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)函數(shù)y=f(x)是最小正周期為2的偶函數(shù),它在區(qū)間[0,1]上的圖象為如圖所示的線段AB,則方程[f(x)]2=x的最大實(shí)數(shù)根的值為$\frac{11-\sqrt{21}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.設(shè)函數(shù)f(x)的定義域?yàn)镈,記f(X)={y|y=f(x),x∈X⊆D},f-1(Y)={x|f(x)∈Y,x∈D},若f(x)=2sin(ωx+$\frac{5π}{6}$)(ω>0),D=[0,π],且f(f-1([0,2])=[0,2],則ω的取值范圍是[$\frac{5}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知f(x)=lnx,則$f'(\frac{1}{e})$的值為( 。
A.1B.-1C.eD.$\frac{1}{e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.?dāng)?shù)列{an}前n項(xiàng)和Sn,滿足$\frac{n+1}{2}$(an-a1)=Sn-S1,a1=1.(n∈N*
(1)令bn=$\frac{{a}_{n}}{n}$,求數(shù)列{bn}的通項(xiàng)公式;
(2)若數(shù)列{cn}滿足cn=nan,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知兩不共線的向量$\overrightarrow{a}$,$\overrightarrow$,若對(duì)非零實(shí)數(shù)m,n有m$\overrightarrow{a}$+n$\overrightarrow$與$\overrightarrow{a}$-2$\overrightarrow$共線,則$\frac{m}{n}$=( 。
A.-2B.2C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若(x-$\sqrt{6}$)n展開(kāi)式的第三項(xiàng)系數(shù)等于18,則n等于( 。
A.6B.5C.4D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案