分析 根據(jù)單調(diào)性的定義,設(shè)任意的x1,x2∈[0,+∞),且x1<x2,然后作差證明f(x1)<f(x2)即可.
解答 解:函數(shù)f(x)=$\sqrt{x}$在[0,+∞)上是增函數(shù),證明如下:
設(shè)x1,x2∈[0,+∞)且x1<x2,則:
f(x1)-f(x2)=$\sqrt{{x}_{1}}$-$\sqrt{{x}_{2}}$=$\frac{{x}_{1}-{x}_{2}}{\sqrt{{x}_{1}}+\sqrt{{x}_{2}}}$;
又因?yàn)閤1,x2∈[0,+∞)且x1<x2;
∴x1-x2<0,$\sqrt{{x}_{1}}$+$\sqrt{{x}_{2}}$>0;
于是f(x1)-f(x2)<0;
即f(x1)<f(x2);
所以函數(shù)f(x)=$\sqrt{x}$在[0,+∞)上是增函數(shù).
點(diǎn)評(píng) 考查單調(diào)性的定義,以及根據(jù)單調(diào)性定義證明函數(shù)單調(diào)性的方法與過程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com