12.${∫}_{0}^{π}$xcosxdx=-2.

分析 由(xsinx+cosx)′=sinx+xcosx-sinx=xcosx,問(wèn)題得以解決.

解答 解:${∫}_{0}^{π}$xcosxdx=(xsinx+cosx)|${\;}_{0}^{π}$=πsinπ+cosπ-(0+cos0)=-2,
故答案為:-2.

點(diǎn)評(píng) 本題考查了定積分的計(jì)算,關(guān)鍵是求出原函數(shù),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.某個(gè)體服裝店經(jīng)營(yíng)某種服裝,在某周內(nèi)獲純利y(元)與該周每天銷(xiāo)售這種服裝件數(shù)x之間的一組數(shù)據(jù)關(guān)系如下表
x3456789
y66697381899091
(1)求純利y與每天銷(xiāo)售件數(shù)x之間的回歸方程;
(2)若該周內(nèi)某天銷(xiāo)售服裝20件,估計(jì)可獲純利多少元?
已知:$\sum_{i=1}^{7}$x${\;}_{i}^{2}$=280,$\sum_{i=1}^{7}$y${\;}_{i}^{2}$=45309,$\sum_{i=1}^{7}$xiyi=3487,$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.一汽車(chē)廠生產(chǎn)A、B二類(lèi)轎車(chē),每類(lèi)轎車(chē)均有舒適型和標(biāo)準(zhǔn)型兩種型號(hào),某月的產(chǎn)量如舒適型如表(單位:輛):
 轎車(chē)A 轎車(chē)B 
 舒適型 150400 
 標(biāo)準(zhǔn)型 450 600
(1)用分層抽樣的方法在B類(lèi)轎車(chē)中抽取一個(gè)容量為5的樣本,將該樣本看成一個(gè)總體,從中任取2輛,求至少有1輛舒適型轎車(chē)的概率;
(2)用隨機(jī)抽樣的方法從A類(lèi)舒適型轎車(chē)中抽取8輛,經(jīng)檢測(cè)它們的得分如下:9.4、8.6、9.2、9.6、8.7、9.3、9.0、8.2,把這8輛轎車(chē)的得分看作一個(gè)總體,從中任取一個(gè)數(shù),求該數(shù)與樣本平均數(shù)之差的絕對(duì)值不超過(guò)0.5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.某商場(chǎng)有4個(gè)大門(mén),若從一個(gè)門(mén)進(jìn)去,購(gòu)買(mǎi)商品后再?gòu)牧硪粋(gè)門(mén)出來(lái),不同的走法共有( 。
A.3種B.7種C.12種D.16種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某班級(jí)有男三好學(xué)生5人,女三好學(xué)生4人
(1)從中任選一人去領(lǐng)獎(jiǎng),有多少種不同的選法?
(2)從中任選男、女三好學(xué)生各一人去參加座談會(huì),有多少種不同的選法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.不等式$\frac{2-x}{x+4}$>1的解集是(  )
A.(-∞,-1)B.(-4,+∞)C.(-4,2)D.(-4,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.?dāng)?shù)列{an}滿足a1=1,且(an+1-2an)(an+1-an-2)=0,則數(shù)列{an}是( 。
A.等比數(shù)列
B.等差數(shù)列
C.等差數(shù)列或等比數(shù)列
D.可能既不是等差數(shù)列也不是等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若(1-2x)9=a9x9+a8x8+…+a2x2+a1x+a0,則a1+a2+…+a8+a9=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=x3-3x2-1,x∈R,若f′(a)=-3.
(1)求曲線y=f(x)在點(diǎn)M(a,f(a))處的切線方程;
(2)設(shè)P、Q是曲線y=f(x)上兩點(diǎn),直線PQ的斜率為k,求證:k>-3.

查看答案和解析>>

同步練習(xí)冊(cè)答案