6.如圖直線l1,l2,l3的傾斜角分別為α1,α2,α3,則有( 。
A.α1<α2<α3B.α1<α3<α2C.α3<α2<α1D.α2<α1<α3

分析 由圖象可得:tanα3<tanα2<0<tanα1,再利用正切函數(shù)的單調(diào)性即可得出.

解答 解:由圖象可得:tanα3<tanα2<0<tanα1,
∴${α}_{2}>{α}_{3}>\frac{π}{2}>{α}_{1}$.
故選:B.

點評 本題考查了直線的傾斜角與斜率的關(guān)系、三角函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,AD∥BC,∠ABC=∠PAD=90°,側(cè)面PAD⊥底面ABCD.若 PA=AB=BC=$\frac{1}{2}$AD.
(Ⅰ)求證:面PCD⊥平面PAC;
(Ⅱ)側(cè)棱PA上是否存在點E,使得BE∥平面PCD?若存在,指出點E的位置并證明,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△ABC中,AB=5,AC=6,BC=7,S△ABC=6$\sqrt{6}$,O是△ABC的內(nèi)心,若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,其中0≤x≤1,0≤y≤1,則動點P的軌跡所覆蓋的面積是(  )
A.$\frac{{10\sqrt{6}}}{3}$B.$\frac{{5\sqrt{6}}}{3}$C.$\frac{10}{3}$D.$\frac{20}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=-x2+2(a-1)x+2在(-∞,4]上是增函數(shù),則實數(shù)a的范圍是( 。
A.a≥5B.a≥3C.a≤3D.a≤-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在直角坐標(biāo)系xoy中,設(shè)復(fù)數(shù)z滿足|z-1|=1.
(Ⅰ)求復(fù)數(shù)z所對應(yīng)的點(x,y)的軌跡方程C;
(Ⅱ)以原點為極點,以x軸正半軸為極軸建立極坐標(biāo)系,把(Ⅰ)中的曲線C化為極坐標(biāo)方程,并判斷其與曲線$ρcosθ+\sqrt{3}ρsinθ-3=0$的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知平面向量$\overrightarrow a=({2,-1}),\overrightarrow b=({m,2})$,且$\overrightarrow a⊥\overrightarrow b$,則$|{\overrightarrow a+2\overrightarrow b}|$=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若a,b∈R,使|a|+|b|>4成立的一個充分不必要條件是( 。
A.|a+b|≥4B.|a|≥4C.|a|≥2且|b|≥2D.b<-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.不等式|x+3|+|x-2|<7的解為(-4,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,某幾何體的三視圖是三個半徑為2的圓及其部分,其中半徑OA,OB垂直,CD,EF均為直徑,則該幾何體的體積是( 。
A.B.C.D.10π

查看答案和解析>>

同步練習(xí)冊答案