分析 將方程轉(zhuǎn)化為函數(shù)f(x)=x2+(m-1)x+1,利用二次函數(shù)根的分布,確定m的取值范圍.
解答 解:設(shè)f(x)=x2+(m-1)x+1,要使方程x2+(m-1)x+1=0在區(qū)間(0,2)上有兩不同解,
則對應函數(shù)f(x)滿足$\left\{\begin{array}{l}{△>0}\\{f(0)>0}\\{f(2)>0}\\{0<-\frac{m-1}{2}<2}\end{array}\right.$,即$\left\{\begin{array}{l}{(m-1)^{2}-4>0}\\{1>0}\\{2m+3>0}\\{-3<m<1}\end{array}\right.$,
解得-$\frac{3}{2}$<m<-1,所以實數(shù)m的取值范圍是(-$\frac{3}{2}$,-1).
故答案為:(-$\frac{3}{2}$,-1).
點評 本題主要考查二次方程根的取值,將二次轉(zhuǎn)化為函數(shù),利用二次函數(shù)根的分布是解決此類問題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4x-y+2=0 | B. | 4x-y-2=0 | C. | 4x+y+2=0 | D. | 4x+y-2=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\sqrt{x+4}-1(x>0)$ | B. | $\sqrt{x+4}-1(x>0)$ | C. | $-\sqrt{x+4}-1(x<-3)$ | D. | $\sqrt{x+4}-1(x<-3)$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com