19.若雙曲線$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1$上一點(diǎn)P到點(diǎn)F1(-5,0)的距離是7,則點(diǎn)P到點(diǎn)F2(5,0)的距離是13.

分析 求出雙曲線的a=3,運(yùn)用雙曲線的定義可得||PF1|-|PF2||=2a=6,解方程即可得到所求值.

解答 解:雙曲線$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1$的a=3,
由題意可得|PF1|=7,
由雙曲線的定義可得||PF1|-|PF2||=2a=6,
即有|7-|PF2||=6,
解得|PF2|=13或-1(舍去),
故答案為:13.

點(diǎn)評 本題考查雙曲線的定義和方程,主要是定義法的運(yùn)用,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知數(shù)列{an}滿足a1=$\frac{3}{8}$,若$\frac{{a}_{n+6}-{a}_{n}}{91}$≥3n≥an+2-an,則a2017=$\frac{1}{8}$•32017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若A,B是雙曲線x2-$\frac{{y}^{2}}{3}$=1上兩個(gè)動(dòng)點(diǎn),且$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,則△AOB面積的最小值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知定義在R上的函數(shù)f(x)=$\frac{b-{2}^{x}}{{2}^{x}+a}$是奇函數(shù)
(Ⅰ)求a,b的值;
(Ⅱ)若對任意的t∈[-1,2],不等式f(2t2+1)<f(kt)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知拋物線y2=2px的焦點(diǎn)是雙曲線$\frac{x^2}{8}-\frac{y^2}{p}$=1的一個(gè)焦點(diǎn),則雙曲線的漸近線方程為y=±x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.過點(diǎn)P(2,1)的雙曲線與橢圓$\frac{x^2}{4}+{y^2}=1$共焦點(diǎn),則其漸近線方程是( 。
A.$x±\sqrt{2}y=0$B.$\sqrt{2}x±y=0$C.x±2y=0D.2x±y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若雙曲線$\frac{{x}^{2}}{3}$-$\frac{16{y}^{2}}{{p}^{2}}$=1的一個(gè)焦點(diǎn)在拋物線y2=2px的準(zhǔn)線上,則該雙曲線的離心率為( 。
A.$\frac{2\sqrt{3}}{3}$B.$\frac{3}{2}$C.$\frac{4}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若雙曲線的方程為4x2-9y2=36,則其實(shí)軸長為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,PA⊥底面ABCD,M是棱PD的中點(diǎn),且PA=AB=AC=2,BC=2$\sqrt{2}$.
(Ⅰ)求證:CD⊥平面PAC;
(Ⅱ)N是棱AB上一點(diǎn),且三棱錐A-MNC的體積等于四棱錐P-ABCD體積的$\frac{1}{12}$,求$\frac{AN}{NB}$的值.

查看答案和解析>>

同步練習(xí)冊答案