14.已知拋物線y2=2px的焦點是雙曲線$\frac{x^2}{8}-\frac{y^2}{p}$=1的一個焦點,則雙曲線的漸近線方程為y=±x.

分析 求得拋物線的焦點,由題意可得$\frac{p}{2}$=$\sqrt{8+p}$,解方程可得p,可得雙曲線的方程,再將其中的“1”換為“0”,進而得到所求漸近線方程.

解答 解:拋物線y2=2px(p>0)的焦點為($\frac{p}{2}$,0),
由拋物線y2=2px的焦點是雙曲線$\frac{x^2}{8}-\frac{y^2}{p}$=1的一個焦點,
可得$\frac{p}{2}$=$\sqrt{8+p}$,
解得p=8,
即有雙曲線的方程為$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{8}$=1,
可得漸近線方程為y=±x.
故答案為:y=±x.

點評 本題考查雙曲線的漸近線方程的求法,注意運用拋物線的焦點和雙曲線的方程,考查運算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若點A,B在曲線y=$\sqrt{{x}^{2}+2}$上,則$\overrightarrow{OA}$•$\overrightarrow{OB}$的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若某四面體的三視圖是全等的等腰直角三角形,且其直角邊的長為6,則該四面體的體積是( 。
A.108B.72C.36D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.雙曲線$\frac{x^2}{9}-\frac{y^2}{4}=-1$的漸近線為( 。
A.$y=±\frac{3}{2}x$B.$y=±\frac{2}{3}x$C.$y=±\frac{{\sqrt{13}}}{3}x$D.$y=±\frac{{\sqrt{13}}}{2}x$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.與雙曲線$\frac{{x}^{2}}{2}$-y2=1有相同漸近線,且與橢圓$\frac{y^2}{8}+\frac{x^2}{2}$=1有共同焦點的雙曲線方程是$\frac{{y}^{2}}{2}$-$\frac{{x}^{2}}{4}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若雙曲線$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1$上一點P到點F1(-5,0)的距離是7,則點P到點F2(5,0)的距離是13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1的離心率是$\frac{\sqrt{13}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知雙曲線$\frac{{y}^{2}}{5}$-$\frac{{x}^{2}}{m}$=1的一個焦點與拋物線x2=12y的焦點相同,則此雙曲線的漸近線方程為( 。
A.y=±$\frac{\sqrt{5}}{5}$xB.y=±$\frac{2\sqrt{5}}{5}$xC.y=$±\frac{\sqrt{5}}{2}$xD.y=$±\sqrt{5}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{2}=1(a>0)$與拋物線y2=8x的焦點重合,直線y=x+1與該雙曲線的交點個數(shù)是( 。
A.0B.1C.2D.不確定

查看答案和解析>>

同步練習(xí)冊答案