18.已知△ABC中,$a=\sqrt{2}$,$b=\sqrt{3}$,B=60°,那么∠A=( 。
A.45°B.90°C.135°或45°D.150°或30°

分析 根據(jù)題意和正弦定理求出sinA的值,再由邊角關(guān)系和特殊角的正弦值求出角A.

解答 解:由題意知,$a=\sqrt{2}$,$b=\sqrt{3}$,B=60°,
∴根據(jù)正弦定理得,$\frac{a}{sinA}=\frac{sinB}$,
則sinA=$\frac{asinB}$=$\frac{\sqrt{2}×\frac{\sqrt{3}}{2}}{\sqrt{3}}$=$\frac{\sqrt{2}}{2}$,
由0<A<180°,得A=45°或135°,
∵b>a,∴B>A,則A=45°,
故選:A.

點評 本題考查正弦定理,以及邊角關(guān)系的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.不等式${(a+1)^{-\frac{1}{4}}}<{(3-2a)^{-\frac{1}{4}}}$的解集是($\frac{2}{3}$,$\frac{3}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖所示的是“概率”知識的( 。
A.流程圖B.結(jié)構(gòu)圖C.程序框圖D.直方圖

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知f(x)=ax-lnx,a∈R.
(Ⅰ)當(dāng)a=2時,求曲線f(x)在點(1,f(1))處的切線方程;
(Ⅱ)是否存在實數(shù)a,使f(x)在區(qū)間(0,e]的最小值是3,若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.記cos(-80°)=k,那么tan80°=( 。
A.$\frac{\sqrt{1-{k}^{2}}}{k}$B.-$\frac{\sqrt{1-{k}^{2}}}{k}$C.$\frac{k}{\sqrt{1-{k}^{2}}}$D.-$\frac{k}{\sqrt{1-{k}^{2}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求下列各題中的函數(shù)f(x)的解析式.
(1)已知f($\sqrt{x}+2$)=x+4$\sqrt{x}$,求f(x)
(2)已知函數(shù)t=f(x)滿足2f(x)+f($\frac{1}{x}$)=2x,x∈R且x≠0,求f(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若鈍角三角形ABC三內(nèi)角A,B,C的度數(shù)成等差數(shù)列,且最大邊長與最小邊長的比為m,則m的取值范圍是( 。
A.1<m≤2B.1<m<2C.m>2D.m≥2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)集合A={x|x>1},集合$B=\{x|y=\sqrt{3-x}\}$,則A∩B=( 。
A.[0,+∞)B.(-∞,1)C.[1,+∞)D.(1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=loga($\sqrt{{x}^{2}+1}$+x)+$\frac{1}{{a}^{x}-1}$+$\frac{3}{2}$(a>0,a≠1),若f(sin($\frac{π}{6}$-α))=$\frac{1}{3}$(α≠kπ+$\frac{π}{6}$,k∈Z),則f(cos(α-$\frac{2π}{3}$))=$\frac{5}{3}$.

查看答案和解析>>

同步練習(xí)冊答案