2.函數(shù)y=arcsin(1-x)的定義域為{x|0≤x≤2},值域為[-$\frac{π}{2}$,$\frac{π}{2}$].

分析 由條件利用反正弦函數(shù)的定義,反正弦函數(shù)的定義域和值域,求得函數(shù)的定義域和值域.

解答 解:由函數(shù)y=arcsin(1-x),可得-1≤1-x≤1,求得0≤x≤2,
故函數(shù)的定義域為{x|0≤x≤2},
由于-1≤1-x≤1,故有-$\frac{π}{2}$≤arcsin(1-x)≤$\frac{π}{2}$,
故函數(shù)的值域為[-$\frac{π}{2}$,$\frac{π}{2}$],
故答案為:{x|0≤x≤2};[-$\frac{π}{2}$,$\frac{π}{2}$].

點評 本題主要考查反正弦函數(shù)的定義,反正弦函數(shù)的定義域和值域,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列函數(shù)中在定義域內(nèi)既是奇函數(shù)又是增函數(shù)的為( 。
A.y=2x+1B.y=x2C.y=$\frac{1}{x}$D.y=x|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)函數(shù)f(x)滿足f(x)=x2+3f′(1)x-f(1),則f(4)=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.直角三角形ABC的三邊長分別為a,b,c,且c為斜邊的長.
(1)若a,b,c成等比數(shù)列,且a=2,求c的值;
(2)已知a,b,c均為正整數(shù).
    (i)若a,b,c是三個連續(xù)的整數(shù),求三角形ABC的面積;
    (ii)若a,b,c成等差數(shù)列,將這些三角形的面積從小到大排成一列,記第n個為Sn,且Tn=-S${\;}_{1}+{S}_{2}-{S}_{3}+…+(-1)^{n}{S}_{n}$,求滿足不等式|Tn|>3•2n的所有n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.執(zhí)行如圖所示程序框圖,則輸出的n為(  )
A.4B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知向量$\overrightarrow{a}$=(2x+1,4),$\overrightarrow$=(2-x,3),若$\overrightarrow{a}$∥$\overrightarrow$,則實數(shù)x的值為( 。
A.$-\frac{1}{6}$B.$-\frac{1}{2}$C.$\frac{1}{6}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=xcos2x,則f′(x)=cos2x-2xsin2x,曲線y=f(x)在點($\frac{π}{2}$,-$\frac{π}{2}$)處的切線傾斜角是135°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知$\overrightarrow{a}$、$\overrightarrow$為互相垂直的單位向量,若向量$\overrightarrow{c}$滿足|$\overrightarrow{a}$+$\overrightarrow$-$\overrightarrow{c}$|=1,則|$\overrightarrow{c}$|的取值范圍是[$\sqrt{2}$-1,$\sqrt{2}$+1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}的前n項和Sn滿足:Sn=2an-n(n∈N*).
(1)證明數(shù)列{an+1}是等比數(shù)列,并求出數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=log2(an+1),求數(shù)列{$\frac{_{n}}{{a}_{n}+1}$}的前n項和Tn,并證明:$\frac{1}{2}$≤Tn<2.

查看答案和解析>>

同步練習(xí)冊答案