已知P為橢圓C:
x2
25
+
y2
16
=1
上的任意一點,F(xiàn)為橢圓C的右焦點,M的坐標(biāo)為(1,3),則|PM|+|PF|的最小值為
 
分析:先作出圖形來,再根據(jù)橢圓的定義得出|PM|+|PF|=2a-(|PF1|-|PM|),將|PM|+|PF|的最小值轉(zhuǎn)化為求|PF1|-|PM|的最大值,最后找到取得最值的狀態(tài)求解.
解答:精英家教網(wǎng)解:設(shè)橢圓的左焦點為:F1
根據(jù)橢圓的第一定義|PM|+|PF|=|PM|+2a-|PF1|=2a-(|PF1|-|PM|),
∴|PM|+|PF|取得最小值時,即|PF1|-|PM|最大,
如圖所示:|PF1|-|PM|≤|MF1|=5,
當(dāng)P,M,F(xiàn)1共線且P在MF1的延長線上時,取得這個最大值.
∴|PA|+|PF1|的最小值為:10-5=5.
故答案為:5.
點評:本題主要考查了橢圓的應(yīng)用,考查學(xué)生的作圖能力和應(yīng)用橢圓的定義來求最值的能力.解答本題的關(guān)鍵是將|PM|+|PF|的最小值轉(zhuǎn)化成求|PF1|-|PM|最大,從而結(jié)合平面幾何的性質(zhì)解決,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知O為坐標(biāo)原點,F(xiàn)為橢圓C:x2+
y2
2
=1
在y軸正半軸上的焦點,過F且斜率為-
2
的直線l與C交于A、B兩點,點P滿足
OA
+
OB
+
OP
=
0

(Ⅰ)證明:點P在C上;
(Ⅱ)設(shè)點P關(guān)于點O的對稱點為Q,證明:A、P、B、Q四點在同一圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點分別為F1(-1,0)、F2(1,0),P為橢圓C上任意一點,且cos∠F1PF2的最小值為
1
3

(1)求橢圓C的方程;
(2)動圓x2+y2=t2
2
<t<
3
)與橢圓C相交于A、B、C、D四點,當(dāng)t為何值時,矩形ABCD的面積取得最大值?并求出其最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點,點P在橢圓C上,線段PF與圓x2+y2=b2相切于點Q,且
PQ
=
QF
,則橢圓C的離心率為
5
3
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•遼寧模擬)已知F1、F2分別為橢圓C:
x2
4
+
y2
3
=1
的左、右焦點,點P為橢圓C上的動點,則△PF1F2的重心G的軌跡方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)在平面直角坐標(biāo)系中,已知焦距為4的橢圓C:
x2
a2
+
y2
b2
=1  (a>b>0)
的左、右頂點分別為A、B,橢圓C的右焦點為F,過F作一條垂直于x軸的直線與橢圓相交于R、S,若線段RS的長為
10
3

(1)求橢圓C的方程;
(2)若橢圓C上存在兩個不同的點關(guān)于直線l:y=9x+m對稱,求實數(shù)m的取值范圍.
(3)若P為橢圓C在第一象限的動點,過點P作圓x2+y2=5的兩條切線PA、PB,切點為A、B,直線AB與x軸、y軸分別交于點M、N,求△MON(O為坐標(biāo)原點)面積的最小值.

查看答案和解析>>

同步練習(xí)冊答案