(12分)函數(shù)為奇函數(shù),且在上為增函數(shù), , 若對(duì)所有都成立,求的取值范圍。
。
解析試題分析:函數(shù)為奇函數(shù),且在上為增函數(shù), 在上的最大值為.若
. 令看成一條直線 上恒成立,
且 或t=0或 故t的范圍。
考點(diǎn):函數(shù)的奇偶性;函數(shù)的單調(diào)性;二次函數(shù)的性質(zhì);恒成立問(wèn)題。
點(diǎn)評(píng): 此題屬于中檔題。在已知條件中,含有多個(gè)參數(shù),我們做題的主要思想是逐步去掉參數(shù),這是做此題的關(guān)鍵。比如此題根據(jù)“在上恒成立”首先將已知條件“對(duì)所有都成立”轉(zhuǎn)化為“”,這樣就去掉了x;再進(jìn)一步轉(zhuǎn)變自變量,把a(bǔ)看成自變量。這樣問(wèn)題就輕易的解決了。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)
(1)求的表達(dá)式,并判斷的奇偶性;
(2)試證明:函數(shù)的圖象上任意兩點(diǎn)的連線的斜率大于0;
(3)對(duì)于,當(dāng)時(shí),恒有求m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(11分)設(shè)集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機(jī)取一個(gè)數(shù)作為和組成數(shù)對(duì)(,并構(gòu)成函數(shù)
(Ⅰ)寫(xiě)出所有可能的數(shù)對(duì)(,并計(jì)算,且的概率;
(Ⅱ)求函數(shù)在區(qū)間[上是增函數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)已知函數(shù).
(1)設(shè)的定義域?yàn)锳,求集合A;
(2)判斷函數(shù)在(1,+)上單調(diào)性,并用定義加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
定義在上的函數(shù),對(duì)于任意的實(shí)數(shù),恒有,且當(dāng)時(shí),。
(1)求及的值域。
(2)判斷在上的單調(diào)性,并證明。
(3)設(shè),,,求的范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分15分)定義在上的奇函數(shù),滿足 ,又當(dāng)時(shí),是減函數(shù),求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)已知函數(shù)為奇函數(shù),為常數(shù),
(1)求實(shí)數(shù)的值;
(2)證明:函數(shù)在區(qū)間上單調(diào)遞增;
(3)若對(duì)于區(qū)間上的每一個(gè)值,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
海事救援船對(duì)一艘失事船進(jìn)行定位:以失事船的當(dāng)前位置為原點(diǎn),以正北方向?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ad/2/odzol.png" style="vertical-align:middle;" />軸正方向建立平面直角坐標(biāo)系(以1海里為單位長(zhǎng)度),則救援船恰好在失事船正南方向12海里處,如圖,現(xiàn)假設(shè):①失事船的移動(dòng)路徑可視為拋物線;②定位后救援船即刻沿直線勻速前往救援;③救援船出發(fā)小時(shí)后,失事船所在位置的橫坐標(biāo)為
(1)當(dāng)時(shí),寫(xiě)出失事船所在位置的縱坐標(biāo),若此時(shí)兩船恰好會(huì)合,求救援船速度的大小和方向 (若確定方向時(shí)涉及到的角為非特殊角,用符號(hào)及其滿足的條件表示即可)
(2)問(wèn)救援船的時(shí)速至少是多少海里才能追上失事船?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)f(x)=2x3+ax2+bx+1的導(dǎo)數(shù)為f′(x),若函數(shù)y=f′(x)的圖象關(guān)于直線x=-對(duì)稱,且f′(1)=0.
(1)求實(shí)數(shù)a,b的值;
(2)討論函數(shù)f(x)的單調(diào)性,并求出單調(diào)區(qū)間 。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com