16.已知長方體ABCD-A1B1C1D1中,AA1=AB=2,若棱AB上存在點P使D1P⊥PC,則棱AD的長的取值范圍是0<AD≤1;此時若AD取得最大值時,長方體外接球的表面積為9π.

分析 如圖所示,假設棱AB上存在一點P,使得D1P⊥PC,連接DP,由DD1⊥底面ABCD,則必有CP⊥DP,因此只要以DC為直徑的圓與線段AB有交點即可,求出長方體外接球的直徑,可得半徑,即可求出長方體外接球的表面積.

解答 解:如圖所示,當0<AD≤1時,以DC=2為直徑的圓與AB 有交點P,連接CP,DP,則CP⊥DP.
∵DD1⊥底面ABCD,根據(jù)三垂線定理,則CP⊥D1P,滿足題意.
AD=1時,長方體外接球的直徑為$\sqrt{4+4+1}$=3,半徑為$\frac{3}{2}$,
長方體外接球的表面積為$4π•\frac{9}{4}$=9π,
故答案為:0<AD≤1,9π.

點評 本題考查線面垂直的判定與性質(zhì),考查長方體外接球的表面積,掌握三垂線定理及理解直徑所對的圓周角是直角是解題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.如圖所示,正方形ABCD所在平面與圓O所在平面相交于CD,線段CD為圓O的弦,AE垂直于圓O所在平面,垂足E是圓O上異于C,D的點,AE=3,圓O的直徑CE為9.
(1)求證:CD⊥面AED;
(2)求三棱錐D-ABE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知命題p:函數(shù)f(x)=$\left\{\begin{array}{l}{a{x}^{2}+1,x≥0}\\{(a+2){e}^{ax},x<0}\end{array}\right.$為R上的單調(diào)函數(shù),則使命題p成立的一個充分不必要條件為( 。
A.a∈(-1,0)B.a∈[-1,0)C.a∈(-2,0)D.a∈(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.下列說法正確的有②④ (填序號)
①命題“若x=$\frac{π}{6}$,則sinx=$\frac{1}{2}$”的逆命題為真命題
②在△ABC中,若sinA>sinB,則A>B
③命題“?x∈R使得x2+x+1<0”的否定是:“?x∈R,都有x2+x+1>0”
④函數(shù)f(x)=x-sinx在R上有且只有一個零點
⑤已知扇形周長為6cm,面積為2cm2,則扇形中心角為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=cos(2x-$\frac{π}{3}$)+2sin(x-$\frac{π}{4}$)sin(x+$\frac{π}{4}$).
(1)求函數(shù)f(x)的最小正周期和圖象的對稱軸方程;
(2)求函數(shù)f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{2}$]上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.求值:
(1)${8^{\frac{2}{3}}}-{({0.5})^{-3}}+{({\frac{1}{{\sqrt{3}}}})^{-2}}×{({\frac{81}{16}})^{-\frac{1}{4}}}$;
(2)$lg5•lg8000+{({lg{2^{\sqrt{3}}}})^2}+{e^{ln1}}+ln({e\sqrt{e}})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設變量x,y滿足約束條件$\left\{\begin{array}{l}{x+y≥3}\\{x-y≥-1}\\{2x-y≤3}\end{array}\right.$,則目標函數(shù)z=2x+3y的最大值( 。
A.7B.8C.10D.23

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.下列四個條件中,能確定一個平面的條件是(  )
A.空間任意三點B.空間兩條直線
C.空間兩條平行直線D.一條直線和一個點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.函數(shù)y=ax-3+2(a>0且a≠1)恒過定點(3,3).

查看答案和解析>>

同步練習冊答案