5.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)令g(x)=f(-x-$\frac{π}{6}$),求g(x)的單調(diào)遞增區(qū)間.

分析 (1)由題意求出A,T,利用周期公式求出ω,利用當(dāng)x=$\frac{π}{6}$時取得最大值2,求出φ,得到函數(shù)的解析式,即可.
(2)先利用誘導(dǎo)公式得出y=-2sin(2x+$\frac{π}{6}$).再利用正弦函數(shù)的單調(diào)性列出不等式解出.

解答 解:(1)由題意可知A=2,T=4($\frac{5π}{12}$-$\frac{π}{6}$)=π,ω=2,當(dāng)x=$\frac{π}{6}$時取得最大值2,
所以 2=2sin(2x+φ),所以φ=$\frac{π}{6}$,
函數(shù)f(x)的解析式:f(x)=2sin(2x+$\frac{π}{6}$)
(2)g(x)=f(-x-$\frac{π}{6}$)=2sin(-2x-$\frac{π}{6}$)=-2sin(2x+$\frac{π}{6}$),
令$\frac{π}{2}$+2kπ≤2x$+\frac{π}{6}$≤$\frac{3π}{2}$+2kπ,k∈Z,
解得$\frac{π}{6}$+kπ≤x≤$\frac{2π}{3}$+kπ,k∈Z
∴函數(shù)的單調(diào)增區(qū)間是[$\frac{π}{6}$+kπ,$\frac{2π}{3}$+kπ],k∈Z.

點評 本題是中檔題,考查由y=Asin(ωx+φ)的部分圖象確定其解析式,注意函數(shù)的周期的求法,正弦函數(shù)的單調(diào)性的應(yīng)用,考查計算能力,?碱}型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}是公差d≠0的等差數(shù)列,a2、a6、a22成等比數(shù)列,a4+a6=26.
(1)求數(shù)列{an}的通項公式:
(2)令$_{n}{=2}^{n-1}{•a}_{n}$求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖所示的幾何體由平面PECF截棱長為2的正方體得到,其中P、C為原正方體的頂點,E、F為原正方體側(cè)棱的中點,正方形ABCD為原正方體的底面,點G為線段BC上的動點.
(1)求證:平面APC⊥平面PECF;
(2)設(shè)$\overrightarrow{BG}$=λ$\overrightarrow{BC}$,AB與平面EFG所成的角為θ,當(dāng)θ∈($\frac{π}{6}$,$\frac{π}{4}$)時,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)$f(x)=lnx+\frac{a}{x}-1$,其中a為參數(shù),
(Ⅰ)若a=1,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x∈[1,e]時,求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=a•ex+x2-bx(a,b∈R,e=2.71828…是自然對數(shù)的底數(shù)),其導(dǎo)函數(shù)為y=f′(x).
(1)設(shè)a=-1,若函數(shù)y=f(x)在R上是單調(diào)減函數(shù),求b的取值范圍;
(2)設(shè)b=0,若函數(shù)y=f(x)在R上有且只有一個零點,求a的取值范圍;
(3)設(shè)b=2,且a≠0,點(m,n)(m,n∈R)是曲線y=f(x)上的一個定點,是否存在實數(shù)x0(x0≠m),使得f(x0)=f′($\frac{{x}_{0}+m}{2}$)(x0-m)+n成立?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.用min{a,b,c}表示a,b,c三個數(shù)中的最小值,設(shè)f(x)=min{${\sqrt{x}$,-x+2},則$\int_0^2$f(x)dx=$\frac{7}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖四棱錐P-ABCD,三角形ABC為正三角形,邊長為2,AD⊥DC,AD=1,PO垂直于平面ABCD于O,O為AC的中點.
(1)證明PA⊥BO;
(2)證明DO∥平面PAB;
(3)若PD=$\sqrt{6}$,直線PD與平面PAC所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若關(guān)于x的方程x2-mx+2=0在區(qū)間[1,2]上有解,則實數(shù)m的取值范圍是[2$\sqrt{2}$,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.與角-$\frac{π}{3}$終邊相同的角是( 。
A.$\frac{2π}{3}$B.$\frac{π}{6}$C.$\frac{5π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步練習(xí)冊答案