7.設(shè)U=R,A={x|x≤1},B={x|-1≤x≤2},求CuA,CuB,A∩B,A∪B.

分析 直接利用集合的交、并、補(bǔ)的運算法則求解即可.

解答 解:U=R,A={x|x≤1},B={x|-1≤x≤2},
CuA={x|x<1};
CuB={x|x<-1或x>2};
A∩B={x|x≤1}∩{x|-1≤x≤2}={x|-1≤x≤1};
A∪B={x|x≤2}.

點評 本題考查集合的基本運算,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知直線l1經(jīng)過點A(0,-1)和點B(-$\frac{4}{a}$,1),直線l2經(jīng)過點M(1,1)和點N(0,-2),若l1與l2沒有公共點,則實數(shù)a的值為-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知a為實數(shù),函數(shù)f(x)=alnx+x2-4x.
(1)當(dāng)a=1時,求f(x)在x=1處的切線方程;
(2)定義:若函數(shù)m(x)的圖象上存在兩點A,B,設(shè)線段AB的中點為P(x0,y0),若m(x)在點Q(x0,m(x0))處的切線l與直線AB平行或重合,則函數(shù)m(x)是“中值平衡函數(shù)”,切線l叫做函數(shù)m(x)的“中值平衡切線”,試判斷函數(shù)f(x)是否是“中值平衡切線”?若是,判斷函數(shù)f(x)的“中值平衡切線”的條數(shù);若不是,說明理由;
(3)設(shè)g(x)=(a-2)x,若?x0∈[$\frac{1}{e}$,e],使得f(x0)≤g(x0)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={x|x<2},B={x|-1≤x≤3},則A∩B=( 。
A.[-1,2)B.[-1,3]C.(-∞,3]D.[-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)f(x)=2$\sqrt{x}$+$\frac{1}{x}$,x∈(0,5]的最小值是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知集合A,B,求A∪B.
(1)A={1,2},B={2,3};
(2)A={a,b},B={c,d,e,f};
(3)A={1,3,5},B=∅;
(4)A={2,4},B={1,2,3,4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知a,b,c分別是△ABC的三個內(nèi)角A,B,C所對的邊,若a=bcos(A+B),則tan(A+$\frac{π}{4}$)的最大值為$\frac{9+4\sqrt{2}}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)集合A={x|(x+2)(x-3)<0},B={x|4x+c<0}.
(1)若A⊆B,求實數(shù)c的取值范圍;
(2)若A∩∁RB={x|1≤x<3},求實數(shù)c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆湖北襄陽四中高三七月周考三數(shù)學(xué)(理)試卷(解析版) 題型:填空題

已知求過原點與相切的直線方程___________;

查看答案和解析>>

同步練習(xí)冊答案