解答:
解:當(dāng)x≥0時(shí),f(x)=ax
2+2x=a(x+
)
2-
,
當(dāng)x<0時(shí),g(x)=-ax
2+2x=-a(x-
)
2+
,
當(dāng)a=0時(shí),A是空集,舍去,
當(dāng)a>0時(shí),二次函數(shù)f(x)開(kāi)口向上,對(duì)稱軸x=-
,f(x)在x≥0上是增函數(shù),A是空集,
二次函數(shù)g(x)開(kāi)口向下,對(duì)稱軸x=
,g(x)在x<0上是增函數(shù),A是空集,
當(dāng)a<0時(shí),二次函數(shù)f(x)開(kāi)口向下,在[0,-
]上是增函數(shù),在(
,+∞)上是減函數(shù),
二次函數(shù)g(x)開(kāi)口向上,在(-∞,
]上是減函數(shù),在(
,0)上是增函數(shù),
∴a<0時(shí),A非空集,
對(duì)于任意的x屬于[-
,
],f(x+a)<f(x)成立.
當(dāng)x≤0時(shí),g(x+a)<g(x)=g(
-x)≤0,由g(x)區(qū)間單調(diào)性知,
x+a<x且x+a>
-x,解得,-1<a<0
當(dāng)x>0時(shí),
<-
,函數(shù)f(x)在單調(diào)增區(qū)間內(nèi)滿足f(x+a)<f(x),
∴a的取值范圍為,-1<a<0,
故答案為:(-1,0).