【題目】如圖1,在邊長為4的正三角形ABC中,D,F(xiàn)分別為AB,AC的中點,E為AD的中點.將△BCD與△AEF分別沿CD,EF同側折起,使得二面角A﹣EF﹣D與二面角B﹣CD﹣E的大小都等于90°,得到如圖2所示的多面體.
(1)在多面體中,求證:A,B,D,E四點共同面;
(2)求多面體的體積.
【答案】
(1)證明:因為二面角A﹣EF﹣D的大小等于90°,
所以平面AEF⊥平面DEFC,
又AE⊥EF,AE平面AEF,平面AEF∩平面DEFC=EF,
所以AE⊥平面DEFC,
同理,可得BD⊥平面DEFC,
所以AE∥BD,故A,B,D,E四點共同面
(2)解:因為AE⊥平面DEFC,BD⊥平面DEFC,EF∥CD,AE∥BD,DE⊥CD,
所以AE是四棱錐A﹣CDEF的高,點A到平面BCD的距離等于點E到平面BCD,
又 , ,
所以
【解析】(1)推導出AE⊥平面DEFC,BD⊥平面DEFC,從而AE∥BD,由此能證明A,B,D,E四點共同面.(2)求出AE是四棱錐A﹣CDEF的高,點A到平面BCD的距離等于點E到平面BCD的距離,多面體的體積V=VA﹣CDEF+VA﹣BCD,由此能求出結果.
【考點精析】解答此題的關鍵在于理解直線與平面垂直的性質的相關知識,掌握垂直于同一個平面的兩條直線平行.
科目:高中數(shù)學 來源: 題型:
【題目】已知MOD函數(shù)是一個求余函數(shù),記MOD(m,n)表示m除以n的余數(shù),例如MOD(8,3)=2.如圖是某個算法的程序框圖,若輸入m的值為48時,則輸出i的值為( )
A.7
B.8
C.9
D.10
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,四邊形ABCD是菱形,且∠A=60°,AB=2,E為AB的中點,將四邊形EBCD沿DE折起至EDC1B1 , 如圖2.
(Ⅰ) 求證:平面ADE⊥平面AEB1;
(Ⅱ) 若二面角A﹣DE﹣C1的大小為 ,求三棱錐C1﹣AB1D的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),其中0≤α<π.在以O為極點,x軸的正半軸為極軸的極坐標系中,曲線C1:ρ=4cosθ.直線l與曲線C1相切.
(1)將曲線C1的極坐標方程化為直角坐標方程,并求α的值.
(2)已知點Q(2,0),直線l與曲線C2:x2+ =1交于A,B兩點,求△ABQ的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD為菱形,E,F(xiàn)分別是BB1 , DD1的中點,G為AE的中點且FG=3,則△EFG的面積的最大值為( )
A.
B.3
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】據統(tǒng)計,某物流公司每天的業(yè)務中,從甲地到乙地的可配送的貨物量X(40≤X<200,單位:件)的頻率分布直方圖,如圖所示,將頻率視為概率,回答以下問題.
(1)求該物流公司每天從甲地到乙地平均可配送的貨物量;
(2)該物流公司擬購置貨車專門運營從甲地到乙地的貨物,一輛貨車每天只能運營一趟,每輛車每 趟最多只能裝載40 件貨物,滿載發(fā)車,否則不發(fā)車.若發(fā)車,則每輛車每趟可獲利1000 元;若未發(fā)車,
則每輛車每天平均虧損200 元.為使該物流公司此項業(yè)務的營業(yè)利潤最大,該物流公司應該購置幾輛貨
車?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在棱長為1的正方體ABCD﹣A1B1C1D1中,點P是線段BD1上的動點.當△PAC在平面DC1 , BC1 , AC上的正投影都為三角形時,將它們的面積分別記為S1 , S2 , S3 .
(i)當BP= 時,S1S2(填“>”或“=”或“<”);
(ii) S1+S2+S3的最大值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題p:函數(shù)f(x)=x3+ax2+x在R上是增函數(shù);命題q:若函數(shù)g(x)=ex﹣x+a在區(qū)間[0,+∞)沒有零點.
(1)如果命題p為真命題,求實數(shù)a的取值范圍;
(2)命題“p∨q”為真命題,“p∧q”為假命題,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com