【題目】根據(jù)以往的經(jīng)驗(yàn),某工程施工期間的降水量(單位:)對(duì)工期的影響如下表:
降水量 | ||||
工期延誤天數(shù) | 0 | 2 | 6 | 10 |
歷年氣象資料表明,該工程施工期間降水量小于300,700,900的概率分別為0.3,0.7,0.9,求:
(1)工期延誤天數(shù)的均值與方差;
(2)在降水量至少是300的條件下,工期延誤不超過6天的概率.
【答案】(1);;(2).
【解析】試題分析:(1)由題意,該工程施工期間降水小于的概率分別為,結(jié)合工程施工期間的降水量對(duì)工期的影響,可求相應(yīng)的概率,金額可得延誤天數(shù)的均值與方差;(2)利用概率的加法公式,可得各個(gè)概率值,再利用條件概率,即可得到結(jié)論.
試題解析:(1)由已知條件和概率的加法公式,有
,
,
,
.
所以的分布列為:
0 | 2 | 6 | 10 | |
0.3 | 0.4 | 0.2 | 0.1 |
于是,;
D(Y)=(0-3)2×0.3+(2-3)2×0.4+(6-3)2×0.2+(10-3)2×0.1=9.8.
故工期延誤天數(shù)Y的均值為3,方差為9.8,
(2)由概率的加法公式,,
又.
由條件概率,得
.
故在降水量至少是300的條件下,工期延期不超過6天的概率是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[2a,a+1]上不單調(diào),求實(shí)數(shù)a的取值范圍;
(3)在區(qū)間[-1,1]上,y=f(x)的圖象恒在y=2x+2m+1的圖象上方,試確定實(shí)數(shù)m的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有3名男生,4名女生,在下列不同要求下,求不同的排列方法種數(shù):
(1)選其中5人排成一排
(2)全體排成一排,甲不站在排頭也不站在排尾
(3)全體排成一排,男生互不相鄰
(4)全體排成一排,甲、乙兩人中間恰好有3人
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面為菱形 且∠ABC=120°,PA⊥底面ABCD,AB=2,PA=,
(1)求證:平面PBD⊥平面PAC;
(2)求三棱錐P--BDC的體積。
(3)在線段PC上是否存在一點(diǎn)E,使PC⊥平面EBD成立.如果存在,求出EC的長;如果不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在高中學(xué)習(xí)過程中,同學(xué)們經(jīng)常這樣說:“如果物理成績好,那么學(xué)習(xí)數(shù)學(xué)就沒什么問題.”某班針對(duì)“高中生物理學(xué)習(xí)對(duì)數(shù)學(xué)學(xué)習(xí)的影響”進(jìn)行研究,得到了學(xué)生的物理成績與數(shù)學(xué)成績具有線性相關(guān)關(guān)系的結(jié)論.現(xiàn)從該班隨機(jī)抽取5名學(xué)生在一次考試中的物理和數(shù)學(xué)成績,如下表:
編號(hào) 成績 | 1 | 2 | 3 | 4 | 5 |
物理() | 90 | 85 | 74 | 68 | 63 |
數(shù)學(xué)() | 130 | 125 | 110 | 95 | 90 |
求數(shù)學(xué)成績關(guān)于物理成績的線性回歸方程(精確到
若某位學(xué)生的物理成績?yōu)?0分,預(yù)測他的數(shù)學(xué)成績;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】上周某校高三年級(jí)學(xué)生參加了數(shù)學(xué)測試,年部組織任課教師對(duì)這次考試進(jìn)行成績分析.現(xiàn)從中抽取80名學(xué)生的數(shù)學(xué)成績(均為整數(shù))的頻率分布直方圖如圖所示.
(Ⅰ)估計(jì)這次月考數(shù)學(xué)成績的平均分和眾數(shù);
(Ⅱ)假設(shè)抽出學(xué)生的數(shù)學(xué)成績在段各不相同,且都超過94分.若將頻率視為概率,現(xiàn)用簡單隨機(jī)抽樣的方法,從95,96,97,98,99,100這6個(gè)數(shù)字中任意抽取2個(gè)數(shù),有放回地抽取3次,記這3次抽取中恰好有兩名學(xué)生的數(shù)學(xué)成績的次數(shù)為,求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公元年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時(shí),多邊形的面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,其中表示圓內(nèi)接正多邊形的邊數(shù),執(zhí)行此算法輸出的圓周率的近似值依次為 ( )
(參考數(shù)據(jù): )
A. 2.598,3,3.1048 B. 2.598,3,3.1056
C. 2.578,3,3.1069 D. 2.588,3,3.1108
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】潮州統(tǒng)計(jì)局就某地居民的月收入調(diào)查了人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分
布直方圖(每個(gè)分組包括左端點(diǎn),不包括右端點(diǎn),如第一組表示收入在)。
(1)求居民月收入在的頻率;
(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);
(3)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再從這人中分層抽樣方法抽出人作進(jìn)一步分析,則月收入在的這段應(yīng)抽多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍;
(3)證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com