2.f(x)是定義在(-2,2)上的減函數(shù),若f (m-1)>f(2m-1),則實數(shù)m的取值范圍是( 。
A.(0,+∞)B.(0,$\frac{3}{2}$)C.(-1,3)D.($-\frac{1}{2}$,$\frac{3}{2}$)

分析 利用函數(shù)的定義域,結(jié)合函數(shù)是定義在(-2,2)上的減函數(shù),建立關(guān)于m的不等式組并解之,即可得到實數(shù)m的取值范圍.

解答 解:∵f(x)是定義在(-2,2)上的減函數(shù),若f (m-1)>f(2m-1),
結(jié)合函數(shù)的定義域,將原不等式轉(zhuǎn)化為$\left\{\begin{array}{l}{-2<m-1<2}\\{-2<2m-1<2}\\{m-1<2m-1}\end{array}\right.$,解之得:0<m<$\frac{3}{2}$
故選:B.

點評 本題給出抽象函數(shù)的單調(diào)性和奇偶性,解關(guān)于m的不等式f(m-1)+f(3m-1)>0,著重考查了函數(shù)的基本性質(zhì)和不等式組的解法等知識,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

12.已知奇函數(shù)f(x)滿足,x>0時,f(x)=x2-2x;則x<0時,f(x)的解析式為( 。
A.-x2-2xB.-x2+2xC.x2-2xD.x2+2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.函數(shù)$f(x)=tan(ωx+\frac{π}{3})(ω>0)$的最小正周期為$\frac{π}{2}$,為了得到y(tǒng)=tanωx的圖象,只需把y=f(x)的圖象上所有點( 。
A.向右平移$\frac{π}{6}$個單位長度B.向右平移$\frac{π}{12}$個單位長度
C.向左平移$\frac{π}{6}$個長度單位D.向左平移$\frac{π}{12}$個長度單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知二次函數(shù)f(x)=x2-16x+q+3
(1)當q=1時,求f(x)在[-1,9]上的值域;
(2)問:是否存在常數(shù)q(0<q<10),使得當x∈[q,10]時,f(x)的最小值為-51?若存在,求出q的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.如果a>b,那么下列不等式:①a3>b3;②$\frac{1}{a}$<$\frac{1}$;③3a>3b;④lga>lgb.其中恒成立的是①③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.設(shè)命題p:函數(shù)f(x)=x3-ax-1在區(qū)間[-1,1]上單調(diào)遞增;命題q:函數(shù)y=ln(ax2+x+1)的值域是R.如果“(¬p)∧q”為真,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知復數(shù)$\frac{2-ai}{i}=1+bi$,其中a,b∈R,i是虛數(shù)單位,則|a+bi|=( 。
A.-1-3iB.$\sqrt{5}$C.10D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.函數(shù)sgn(x)=$\left\{\begin{array}{l}{-1,x<0}\\{0,x=0}\\{1,x>0}\end{array}$,設(shè)a=$\frac{1}{{{{log}_{\frac{1}{4}}}\frac{1}{2015}}}$+$\frac{1}{{{{log}_{\frac{1}{504}}}\frac{1}{2015}}}$,b=2017,則$\frac{a+b+(a-b)sgn(a-b)}{2}$的值為2017.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.拋物線x=-8y2的焦點坐標是( 。
A.(-$\frac{1}{32}$,0)B.(-2,0)C.($\frac{1}{32}$,0)D.(0,-2)

查看答案和解析>>

同步練習冊答案