【題目】2019年10月5日, 美國NBA火箭隊總經(jīng)理莫雷公開發(fā)布涉港錯誤言論,中國公司與明星紛紛站出來抵制火箭隊,隨后京東、天貓、淘寶等中國電商平臺全線下架了火箭隊的所有商品,當天有大量網(wǎng)友關(guān)注此事,某網(wǎng)上論壇從關(guān)注此事跟帖中,隨機抽取了100名網(wǎng)友進行調(diào)查統(tǒng)計,先分別統(tǒng)計他們在跟帖中的留言條數(shù),再把網(wǎng)友人數(shù)按留言條數(shù)分成6組:,,,,,,得到如圖所示的頻率分布直方圖;并將其中留言不低于40條的規(guī)定為“強烈關(guān)注”,否則為“一般關(guān)注”,對這100名網(wǎng)友進一步統(tǒng)計得到列聯(lián)表的部分數(shù)據(jù)如下表:
一般關(guān)注 | 強烈關(guān)注 | 合計 | |
男 | 60 | ||
女 | 5 | 40 | |
合計 | 100 |
(1)補全列聯(lián)表中數(shù)據(jù),并判斷能否有的把握認為網(wǎng)友對此事件是否為“強烈關(guān)注”與性別有關(guān)?
(2)現(xiàn)已從男性網(wǎng)友中分層抽樣選取了6人,再從這6人中隨機選取2人,求這2人中至少有1人屬于“強烈關(guān)注”的概率.
附:,其中.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
【答案】(1)列聯(lián)表見解析,有;(2)
【解析】
(1)根據(jù)直方圖可知(強烈關(guān)注),因此可以求出強烈關(guān)注的人數(shù),補全列聯(lián)表,根據(jù)列聯(lián)表和題中所給的公式計算出進行判斷即可;
(2)計算出6人中屬于“強烈關(guān)注”的人數(shù),屬于“一般關(guān)注”的人數(shù),然后對人員進行編號,最后利用古典概型計算公式進行求解即可.
解析:(1)由直方圖可知(強烈關(guān)注),
∴強烈關(guān)注的人數(shù)為人,故可補全列聯(lián)表中數(shù)據(jù):
一般關(guān)注 | 強烈關(guān)注 | 合計 | |
男 | 40 | 20 | 60 |
女 | 35 | 5 | 40 |
合計 | 75 | 25 | 100 |
∴,
∴有的把握認為網(wǎng)友對此事件是否為“強烈關(guān)注”與性別有關(guān).
(2)易知6人中屬于“強烈關(guān)注”的有2人,屬于“一般關(guān)注”的有4人,
設(shè)“一般關(guān)注”的4人編號為1,2,3,4;“強烈關(guān)注”的2人編號為5,6,
則6人中隨機選2人的基本事件為12,13,14,15,16,23,24,25,26,34,35,36,45,46,56,共有15種,其中至少有1人屬于“強烈關(guān)注”的有9種,∴.
科目:高中數(shù)學 來源: 題型:
【題目】《算法統(tǒng)宗》全稱《新編直指算法統(tǒng)宗》,是屮國古代數(shù)學名著,程大位著.書中有如下問題:“今有五人均銀四十兩,甲得十兩四錢,戊得五兩六錢.問:次第均之,乙丙丁各該若干?”意思是:有5人分40兩銀子,甲分10兩4錢,戊分5兩6錢,且相鄰兩項差相等,則乙丙丁各分幾兩幾錢?(注:1兩等于10錢)( )
A.乙分8兩,丙分8兩,丁分8兩B.乙分8兩2錢,丙分8兩,丁分7兩8錢
C.乙分9兩2錢,丙分8兩,丁分6兩8錢D.乙分9兩,丙分8兩,丁分7兩
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
如圖,已知是以的直角三角形鐵皮,米,分別是邊上不與端點重合的動點,且.現(xiàn)將鐵皮沿折起至的位置,使得平面平面,連接,如圖所示.現(xiàn)要制作一個四棱錐的封閉容器,其中鐵皮和直角梯形鐵皮分別是這個封閉容器的一個側(cè)面和底面,其他三個側(cè)面用相同材料的鐵皮無縫焊接密封而成(假設(shè)制作過程中不浪費材料,且鐵皮厚度忽略不計).
(1)若為邊的中點,求制作三個新增側(cè)面的鐵皮面積是多少平方米?
(2)求這個封閉容器的最大體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)數(shù)列的前n項和為,已知,,.
(1)證明:為等比數(shù)列,求出的通項公式;
(2)若,求的前n項和,并判斷是否存在正整數(shù)n使得成立?若存在求出所有n值;若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),f′(x),g'(x)為其導函數(shù),當x<0時,f′(x)g(x)+f(x)g'(x)<0且g(﹣3)=0,則使得不等式f(x)g(x)<0成立的x的取值范圍是( )
A.(﹣∞,﹣3)B.(﹣3,0)C.(0,3)D.(3,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線過點,且焦點為F,直線l與拋物線相交于A,B兩點.
⑴求拋物線C的方程,并求其準線方程;
⑵為坐標原點.若,證明直線l必過一定點,并求出該定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖一,在直角梯形中,分別為的三等分點,, ,,,若沿著折疊使得點和重合,如圖二所示,連結(jié).
(1)求證:平面平面;
(2)求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對某校高三年級學生參加社區(qū)服務(wù)次數(shù)進行統(tǒng)計,隨機抽取M名學生作為樣本,得到這M名學生參加社區(qū)服務(wù)的次數(shù),根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖.
分組 | 頻數(shù) | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 24 | n |
[20,25) | m | p |
[25,30] | 2 | 0.05 |
合計 | M | 1 |
(1)求出表中M,p及圖中a的值;
(2)若該校高三學生有240人,試估計該校高三學生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[10,15)內(nèi)的人數(shù);
(3)估計這次學生參加社區(qū)服務(wù)人數(shù)的眾數(shù)、中位數(shù)以及平均數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)a,b∈R,關(guān)于x的方程(x2﹣ax+1)(x2﹣bx+1)=0的四個實根構(gòu)成以q為公比的等比數(shù)列,若q∈[,2],則ab的取值范圍為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com