8.已知扇形的周長為4,當(dāng)扇形的面積最大時(shí),扇形的圓心角α等于( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.1D.2

分析 設(shè)半徑為r,可得2r+rα=4,S扇形=$\frac{1}{2}{r}^{2}α$=-(r-1)2+1,再利用二次函數(shù)的單調(diào)性即可得出.

解答 解:設(shè)半徑為r,則2r+rα=4,
∴S扇形=$\frac{1}{2}{r}^{2}α$=$\frac{1}{2}×{r}^{2}×(\frac{4}{r}-2)$=2r-r2=-(r-1)2+1≤1,
當(dāng)且僅當(dāng)r=1時(shí)取等號,此時(shí)α=2.
故選:D.

點(diǎn)評 本題考查了弧長公式、扇形的面積計(jì)算公式、二次函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=(x+a)lnx,g(x)=$\frac{{x}^{2}}{{e}^{x}}$,已知曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線2x-y=0平行.
(Ⅰ)若方程f(x)=g(x)在(k,k+1)(k∈N)內(nèi)存在唯一的根,求出k的值.
(Ⅱ)設(shè)函數(shù)m(x)=min{f(x),g(x)}(min{p、q})表示p,q中的較小值),求m(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)y=cos2$\frac{x}{2}$-sin2$\frac{x}{2}$的一條對稱軸方程是( 。
A.x=-$\frac{π}{2}$B.x=$\frac{π}{4}$C.x=0D.x=$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)a=0.91.1,b=1.10.9,c=log0.91.1,則a,b,c的大小關(guān)系正確的是( 。
A.b>a>cB.a>b>cC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)f(x)=3$\sqrt{2}$cos(x+φ)+sinx,x∈R,φ∈(-$\frac{π}{2}$,$\frac{π}{2}$)的圖象過點(diǎn)($\frac{π}{2}$,4),則f(x)的最小值為-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}中,a7=4,an+1=$\frac{3{a}_{n}+4}{7-{a}_{n}}$.
(1)試求a8和a6的值;用含有an+1的式子表示an;
(2)對于數(shù)列{an},是否存在自然數(shù)m,使得當(dāng)n≥m時(shí),an<2;當(dāng)n<m時(shí),an>2,若存在只證明;當(dāng)n≥m時(shí),an<2;若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若雙曲線$\frac{{x}^{2}}{8}$-y2=1的左焦點(diǎn)在拋物線y2=2px(p>0)的準(zhǔn)線上,則p的值為( 。
A.$\sqrt{7}$B.3C.2$\sqrt{7}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=|2x-a|,g(x)=x+1.
(1)若a=1,求不等式f(x)≤1的解集;
(2)對任意的x∈R,f(x)+|g(x)|≥a2+2a(a>0)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知△ABC中,點(diǎn)A的坐標(biāo)為(1,5),邊BC所在直線方程為x-2y=0,邊BA所在直線2x-y+m=0過點(diǎn)(-1,1)
(Ⅰ)求點(diǎn)B的坐標(biāo)
(Ⅱ)求向量$\overrightarrow{BA}$在向量$\overrightarrow{BC}$方向上的投影.

查看答案和解析>>

同步練習(xí)冊答案