棱長為1的正方體AC1,動點P在其表面上運動,且與點A的距離是
2
3
3
,點P的集合形成一條曲線,這條曲線的長度是
 
考點:多面體和旋轉(zhuǎn)體表面上的最短距離問題
專題:綜合題,空間位置關(guān)系與距離
分析:本題首先要弄清楚曲線的形狀,再根據(jù)曲線的性質(zhì)及解析幾何知識即可求出長度.
解答: 解:由題意,此問題的實質(zhì)是以A為球心、
2
3
3
為半徑的球在正方體ABCD-A1B1C1D1各個面上交線的長度計算,正方體的各個面根據(jù)與球心位置關(guān)系分成兩類:ABCD、AA1DD1、AA1BB1為過球心的截面,截痕為大圓弧,各弧圓心角為
π
6
、A1B1C1D1、B1BCC1、D1DCC1為與球心距離為1的截面,截痕為小圓弧,
由于截面圓半徑為r=
3
3
,故各段弧圓心角為
π
2

∴這條曲線長度為3•
π
6
2
3
3
+3•
π
2
3
3
=
5
3
6
π

故答案為:
5
3
6
π
點評:本題以正方體為載體,考查軌跡,考查曲線的周長,有一定的難度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
2+i
1-2i
的虛部是( 。
A、iB、-iC、1D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用定義證明函數(shù)f(x)=
1-x2
在[-1,0]上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在△ABC中,A,B,C所對的邊分別為a,b,c,若b-
c
2
=acosC,且a=
3
b
,則角B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

x=4cscθ
y=2cotθ
(θ為參數(shù),θ≠kπ,k∈z)的漸近線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列不等式中,解集為R的是( 。
A、(x-1)2>0
B、
2
x
-1<
2
x
C、|x|>0
D、x2+1>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A、B是直線3x+4y+2=0與圓x2+y2+4y=0的兩個交點,則線段AB的垂直平分線的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若任取x,y∈(0,1],則點P(x,y)滿足y≤x 
1
2
的概率為( 。
A、
2
2
B、
1
3
C、
1
2
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線
x2
16
-
y2
9
=1
上一點P對焦點F1,F(xiàn)2的視角為60°,則△F1PF2的面積為( 。
A、2
3
B、3
3
C、6
3
D、9
3

查看答案和解析>>

同步練習(xí)冊答案