精英家教網 > 高中數學 > 題目詳情

【題目】若存在實數,當時, 恒成立, 則實數的取值范圍是

A B C D

【答案】A

【解析】

試題分析:作出的圖象,如圖,當時,由圖知,合題意,排除選項C、D,當時,由圖知不恒成立,排除A,故選B

方法點睛】本題主要考查分段函數的解析式及圖象、不等式恒成立、數形結合思想及選擇題的特殊值法,屬于難題特殊值法解答選擇題是高中數學一種常見的解題思路和方法,這種方法即可以提高做題速度和效率,又能提高準確性,這種方法主要適合下列題型:1求值問題可將選項逐個驗證;2求范圍問題可在選項中取特殊值,逐一排除;3圖象問題可以用函數性質及特殊點排除;4解方程、求解析式、求通項、求前項和公式問題等等

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某個體戶計劃經銷A、B兩種商品,據調查統(tǒng)計,當投資額為x(x≥0)萬元時,在經銷A、B商品中所獲得的收益分別為f(x)萬元與g(x)萬元、其中f(x)=a(x﹣1)+2(a>0);g(x)=6ln(x+b),(b>0)已知投資額為零時,收益為零.
(1)試求出a、b的值;
(2)如果該個體戶準備投入5萬元經營這兩種商品,請你幫他制定一個資金投入方案,使他能獲得最大收益,并求出其收入的最大值.(精確到0.1,參考數據:ln3≈1.10).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】圓M:x2+y2﹣4x﹣2y+4=0
(1)若圓M的切線在x軸上的截距是y軸上的截距的2倍,求切線的方程;
(2)從圓外一點P(a,b),向該圓引切線PA,切點為A,且PA=PO,O為坐標原點,求證:以PM為直徑的圓過異于M的定點,并求該定點的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,銳角△ABC中, = = ,點M為BC的中點. (Ⅰ)試用 , 表示 ;
(Ⅱ)若| |=5,| |=3,sin∠BAC= ,求中線AM的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在直角坐標系中,過點的直線的傾斜角為45°,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,直線和曲線的交點為點.

(1)求直線的參數方程;

(2)求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=lnx﹣a2x2+ax(a∈R).
(1)當a=1時,求函數f(x)最大值;
(2)若函數f(x)在區(qū)間(1,+∞)上是減函數,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在某次水下科研考察活動中,需要潛水員潛入水深為60米的水底進行作業(yè),根據以往經驗,潛水員下潛的平均速度為 (米/單位時間),每單位時間的用氧量為(升),在水底作業(yè)10個單位時間,每單位時間用氧量為0.9(升),返回水面的平均速度為(米/單位時間),每單位時間用氧量為1.5(升),記潛水員在此次考察活動中的總用氧量為 (升).

(1)求關于的函數關系式;

(2)求當下潛速度取什么值時,總用氧量最少.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知集合A={x|a≤x≤a+8},B={x|x<﹣1或x>5},
(1)當a=0時,求A∩B,A∪(CRB);
(2)若A∪B=B,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x3+(1﹣a)x2﹣a(a+2)x+b(a,b∈R).
(1)若函數f(x)的圖象過原點,且在原點處的切線斜率為﹣3,求a,b的值;
(2)若曲線y=f(x)存在兩條垂直于y軸的切線,求a的取值范圍.

查看答案和解析>>

同步練習冊答案