A. | 當(dāng)x>0且x≠1時(shí),$lgx+\frac{1}{lgx}≥2$ | B. | 當(dāng)x>0時(shí),$\sqrt{x}+\frac{1}{{\sqrt{x}}}≥2$ | ||
C. | 當(dāng)x≥2時(shí),$x+\frac{1}{x}≥2$ | D. | 當(dāng)0<x≤2時(shí),$x-\frac{1}{x}$無(wú)最大值 |
分析 A.x∈(0,1)時(shí),lgx<0,不成立.
B.利用基本不等式的性質(zhì)即可得出成立.
C.x≥2時(shí),f(x)=x+$\frac{1}{x}$,利用導(dǎo)數(shù)研究其單調(diào)性即可得出.
D.0<x≤2時(shí),y=f(x)=$x-\frac{1}{x}$,利用導(dǎo)數(shù)研究其單調(diào)性即可得出.
解答 解:A.x∈(0,1)時(shí),lgx<0,不成立.
B.利用基本不等式的性質(zhì)即可得出成立.
C.x≥2時(shí),f(x)=x+$\frac{1}{x}$,f′(x)=1-$\frac{1}{{x}^{2}}$>0,函數(shù)f(x)單調(diào)遞增,∴f(x)$≥2+\frac{1}{2}$=$\frac{5}{2}$,因此不成立.
D.0<x≤2時(shí),y=f(x)=$x-\frac{1}{x}$,y′=1+$\frac{1}{{x}^{2}}$>0,∴函數(shù)f(x)單調(diào)遞增,∴f(x)≤f(2),因此D不成立.
故選:B.
點(diǎn)評(píng) 本題考查了基本不等式的性質(zhì)、利用導(dǎo)數(shù)研究其單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-3,0)∪(2,3) | B. | (-∞,-3)∪(0,3) | C. | (-∞,-3)∪(3,+∞) | D. | (-3,0)∪(2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=1,g(x)=x0 | B. | f(x)=x-1,g(x)=$\frac{x^2}{x}$-1 | ||
C. | f (x)=x2,g(x)=($\sqrt{x}$)4 | D. | f(x)=|x|,g(x)=$\sqrt{x^2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com