(本小題12分)定義運算:
(1)若已知,解關(guān)于的不等式
(2)若已知,對任意,都有,求實數(shù)的取值范圍。
((1);(2).
解析試題分析:(1)當時,根據(jù)定義有
所以原不等式的解集為
(2)依題意知
因為對任意,都有,
所以
因為的圖像開口向下,對稱軸為直線
① 若,即,則在為減函數(shù),
所以,解得,所以
② 若,即,則,
解得,所以
③ 若,即,則在為增函數(shù),
所以,解得,所以
綜上所述,的取值范圍是
考點:本題主要以新定義為背景,考查恒成立問題.
點評:對于此類新定義問題,學生要注意仔細審題,冷靜思考,新問題的解決還是要靠“老知識”“老方法”,應該有意識地運用轉(zhuǎn)化思想,將新問題轉(zhuǎn)化為我們熟知的問題。對于恒成立問題,要轉(zhuǎn)為為求最值來解決,分情況討論求最值時,要做到不重不漏.
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分15分)已知在定義域上是奇函數(shù),且在上是減函數(shù),圖像如圖所示.
(1)化簡:;
(2)畫出函數(shù)在上的圖像;
(3)證明:在上是減函數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)已知的圖像在點處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)的定義域為,對于任意的,都有,且當時,,若.
(1)求證:為奇函數(shù);
(2)求證:是上的減函數(shù);
(3)求函數(shù)在區(qū)間上的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(10分)已知函數(shù)
(1)用分段函數(shù)的形式表示該函數(shù);
(2)在坐標系中畫出該函數(shù)的圖像
(3)寫出該函數(shù)的定義域,值域,奇偶性和單調(diào)區(qū)間(不要求證明)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(I)求證:不論為何實數(shù)總是為增函數(shù);
(II)確定的值, 使為奇函數(shù);
(Ⅲ)當為奇函數(shù)時, 求的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),(且)。
(1)設,令,試判斷函數(shù)在上的單調(diào)性并證明你的結(jié)論;
(2)若且的定義域和值域都是,求的最大值;
(3)若不等式對恒成立,求實數(shù)的取值范圍;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com