分析 作出題中不等式組表示的平面區(qū)域,得如圖的△ABC及其內(nèi)部,
將目標(biāo)函數(shù)z=2x+y對應(yīng)的直線進(jìn)行平移,可得當(dāng)x=$\frac{1}{4}$,y=$\frac{1}{2}$時,z取得最小值.
解答 解:畫出不等式組$\left\{{\begin{array}{l}{2x-y≥0}\\{y≥x}\\{4x+4y-3≥0}\end{array}}\right.$表示的平面區(qū)域,
得到如圖所示陰影部分及其邊界,
其中A($\frac{1}{4}$,$\frac{1}{2}$),B($\frac{3}{8}$,$\frac{3}{8}$);
設(shè)z=F(x,y)=2x+y,將直線l:z=2x+y進(jìn)行平移,
觀察y軸上的截距變化,可得
當(dāng)l經(jīng)過點(diǎn)A時,目標(biāo)函數(shù)z達(dá)到最小值,
且z最小值=F($\frac{1}{4}$,$\frac{1}{2}$)=2×$\frac{1}{4}$+$\frac{1}{2}$=1.
故答案為:1.
點(diǎn)評 本題給出二元一次不等式組,求目標(biāo)函數(shù)的最小值,著重考查了二元一次不等式組表示的平面區(qū)域和簡單的線性規(guī)劃等知識,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -4 | B. | 16 | C. | 29 | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com