【題目】設(shè){an}是一個(gè)首項(xiàng)為2,公比為qq1)的等比數(shù)列,且3a1,2a2,a3成等差數(shù)列.

1)求{an}的通項(xiàng)公式;

2)已知數(shù)列{bn}的前n項(xiàng)和為Sn,b1=1,且1n2),求數(shù)列{anbn}的前n項(xiàng)和Tn.

【答案】1;(2.

【解析】

1)由題意結(jié)合等差數(shù)列、等比數(shù)列的性質(zhì)可得4×2q=3×2+2q2,解方程后利用等比數(shù)列的通項(xiàng)公式即可得解;

2)由題意結(jié)合等差數(shù)列的判定與通項(xiàng)公式可得,利用的關(guān)系可得,進(jìn)而可得,再利用錯(cuò)位相減法即可得解.

1)因?yàn)?/span>3a12a2,a3成等差數(shù)列,所以4a2=3a1+a3

又{an}是一個(gè)首項(xiàng)為2,公比為qq1)的等比數(shù)列,

所以4×2q=3×2+2q2,解得q=3q=1(舍去),

;

2)由,且,

可得是首項(xiàng)和公差均為1的等差數(shù)列,

所以,所以,

可得n=1時(shí),b1=S1=1;

時(shí),,對(duì)于n=1時(shí),該式也成立,

所以

所以,

,

兩式相減可得

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,大擺錘是一種大型游樂設(shè)備,常見于各大游樂園.游客坐在圓形的座艙中,面向外.通常大擺錘以壓肩作為安全束縛,配以安全帶作為二次保險(xiǎn).座艙旋轉(zhuǎn)的同時(shí),懸掛座艙的主軸在電機(jī)的驅(qū)動(dòng)下做單擺運(yùn)動(dòng).今年五一,小明去某游樂園玩大擺錘,他坐在點(diǎn)A處,大擺錘啟動(dòng)后,主軸在平面內(nèi)繞點(diǎn)O左右擺動(dòng),平面與水平地面垂直,擺動(dòng)的過程中,點(diǎn)A在平面內(nèi)繞點(diǎn)B作圓周運(yùn)動(dòng),并且始終保持,.已知,在大擺錘啟動(dòng)后,給出下列結(jié)論:

①點(diǎn)A在某個(gè)定球面上運(yùn)動(dòng);

②線段在水平地面上的正投影的長度為定值;

③直線與平面所成角的正弦值的最大值為;

與水平地面所成角記為,直線與水平地面所成角記為,當(dāng)時(shí),為定值.

其中正確結(jié)論的個(gè)數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠能夠生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)這兩種產(chǎn)品每噸所需的煤、電以及每噸的產(chǎn)值分別是:

用煤(t

用電(kw

產(chǎn)值(千元)

甲種產(chǎn)品

70

20

80

乙種產(chǎn)品

30

50

110

如果該廠每月至多供煤560t,供電450kw,問如何安排生產(chǎn),才能使該廠月產(chǎn)值最大?月產(chǎn)值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】個(gè)不同的球隨機(jī)地放入編號(hào)為12,,個(gè)盒子內(nèi),求1號(hào)盒恰有個(gè)球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P-ABCD中,PA⊥平面ABCD,EBD的中點(diǎn),GPD的中點(diǎn),,,連接CE并延長交ADF.

1)求證:AD⊥平面CFG;

2)求平面BCP與平面DCP的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.曲線的極坐標(biāo)方程為,曲線與曲線的交線為直線

1)求直線和曲線的直角坐標(biāo)方程;

2)直線軸交于點(diǎn),與曲線相交于,兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C)的焦距為4,其短軸的兩個(gè)端點(diǎn)與長軸的一個(gè)端點(diǎn)構(gòu)成正三角形.

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)設(shè)F為橢圓C的左焦點(diǎn),T為直線上任意一點(diǎn),過FTF的垂線交橢圓C于點(diǎn)P,Q.

i)證明:OT平分線段PQ(其中O為坐標(biāo)原點(diǎn));

ii)當(dāng)最小時(shí),求點(diǎn)T的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,,為異面直線,且,,上兩點(diǎn),上兩點(diǎn),,,分別交于點(diǎn),,,.

1)求證:四邊形為平行四邊形;

2)若,,所成角為,求四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),將曲線上各點(diǎn)縱坐標(biāo)伸長到原來的2倍(橫坐標(biāo)不變)得到曲線,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

1)寫出的極坐標(biāo)方程與直線的直角坐標(biāo)方程;

2)曲線上是否存在不同的兩點(diǎn),(以上兩點(diǎn)坐標(biāo)均為極坐標(biāo),,),使點(diǎn)、的距離都為3?若存在,求的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案