4.已知△ABC的內(nèi)角A,B滿足$\frac{sinB}{sinA}$=cos(A+B),則tanB的最大值為$\frac{\sqrt{2}}{4}$.

分析 先確定出C為鈍角,利用誘導(dǎo)公式及三角形的內(nèi)角和定理化簡已知等式的左邊,利用兩角和與差的正弦函數(shù)公式化簡,再利用同角三角函數(shù)間的基本關(guān)系化簡,得到tanC=-2tanA,化簡tanB=-tan(A+C)為$\frac{1}{\frac{1}{tanA}+2tanA}$,利用基本不等式求出tanB的最大值.

解答 解:∵△ABC的內(nèi)角A,B滿足$\frac{sinB}{sinA}$=cos(A+B),且sinA>0,sinB>0,
∴$\frac{sinB}{sinA}$=-cosC>0,即cosC<0,∴C為鈍角,sinB=-sinAcosC,
又sinB=sin(A+C)=sinAcosC+cosAsinC,
∴sinAcosC+cosAsinC=-sinAcosC,即cosAsinC=-2sinAcosC,
∴tanC=-2tanA,∴tanB=-tan(A+C)=-$\frac{tanA+tanC}{1-tanAtanC}$
=-$\frac{-tanA}{1+{2tan}^{2}A}$=$\frac{1}{\frac{1}{tanA}+2tanA}$≤$\frac{1}{2\sqrt{2}}$=$\frac{\sqrt{2}}{4}$,
當(dāng)且僅當(dāng)$\frac{1}{tanA}$=2tanA時,取等號,故tanB的最大值為$\frac{\sqrt{2}}{4}$,
故答案為:$\frac{{\sqrt{2}}}{4}$

點評 此題考查了同角三角函數(shù)間的基本關(guān)系,兩角和與差的正弦、正切函數(shù)公式,以及基本不等式的運用,熟練掌握基本關(guān)系及公式是解本題的關(guān)鍵,本題考察了轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.定義在(0,+∞)上的函數(shù)f(x)滿足:$\frac{{x}_{1}f({x}_{1})-{x}_{2}f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,且f(2)=4,則不等式f(x)-$\frac{8}{x}$>0的解集為( 。
A.(2,+∞)B.(0,2)C.(0,4)D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知平面α截一球面得圓M,過圓M的圓心的平面β與平面α所成二面角的大小為60°,平面β截該球面得圓N,若該球的表面積為64π,圓M的面積為4π,則圓N的半徑為$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)函數(shù)f(x)=2x+2ax+b且f(-1)=$\frac{5}{2}$,f(0)=2.
(1)求a,b的值; 判斷函數(shù)f(x)的奇偶性;
(2)判斷函數(shù)f(x)在(0,+∞)上的單調(diào)性;
(3)若關(guān)于x的方程mf(x)=2-x在[-1,1]上有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如圖,在平行四邊形ABCD中,AB=4,AD=3,∠DAB=$\frac{π}{3}$,點E,F(xiàn)分別在BC,DC邊上,且$\overrightarrow{BE}$=$\frac{1}{2}$$\overrightarrow{EC}$,$\overrightarrow{DF}$=$\overrightarrow{FC}$,則$\overrightarrow{AE}$•$\overrightarrow{EF}$=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知全集U={-1,0,1,2},集合A={-1,2},則∁UA={0,1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.將斜邊長為4的等腰直角三角形繞其斜邊所在直線旋轉(zhuǎn)一周,則所形成的幾何體體積是$\frac{16π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知向量$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow$=(cosβ,sinβ),且0<α<β<π,則$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$的夾角為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知拋物線y2=2px(p>0)的焦點為F,直線y=x-8與此拋物線交于A、B兩點,與x軸交于點C,O為坐標(biāo)原點,若$\overrightarrow{FC}$=3$\overrightarrow{OF}$.
(1)求此拋物線的方程;
(2)求證:OA⊥OB.

查看答案和解析>>

同步練習(xí)冊答案