(本小題滿分12分) 某工廠每天生產(chǎn)某種產(chǎn)品最多不超過40件,并且在生產(chǎn)過程中產(chǎn)品的正品率P與每日生產(chǎn)產(chǎn)品件數(shù)x(x∈N*)間的關(guān)系為P,每生產(chǎn)一件正品盈利4000元,每出現(xiàn)一件次品虧損2000元.(注:正品率=產(chǎn)品的正品件數(shù)÷產(chǎn)品總件數(shù)×100%).

(Ⅰ)將日利潤y(元)表示成日產(chǎn)量x(件)的函數(shù);

(Ⅱ)求該廠的日產(chǎn)量為多少件時(shí),日利潤最大?并求出日利潤的最大值.

 

【答案】

(1)y=-+3600x(x∈N*,1≤x≤40)(2)該廠的日產(chǎn)量為30件時(shí),日利潤最大,其最大值為7200元

【解析】

試題分析:解:(1)y=4000··x-2000(1-)·x……………………………4分

=3600x-

∴所求的函數(shù)關(guān)系是y=-+3600x(x∈N*,1≤x≤40). …………………………4分

(Ⅱ) 由函數(shù)y= (x>0),y′=3600-4,令y′=0,解得x=30.

∴當(dāng)1x<30時(shí),y′>0;當(dāng)30<x40時(shí),y′<0.

∴函數(shù)y=在[1,30]上是單調(diào)遞增函數(shù),在[30,40]上是單調(diào)遞減函數(shù). ………………………………………………………………9分

∴當(dāng)x=30時(shí),函數(shù)y= (1≤x≤40)取最大值,最大值為×303+3600×30=7200(元).

∴該廠的日產(chǎn)量為30件時(shí),日利潤最大,其最大值為7200元 ……………………12分

考點(diǎn):考查了函數(shù)的模型在實(shí)際中的運(yùn)用。

點(diǎn)評(píng):解決這類問題的關(guān)鍵是理解利潤函數(shù)與成本和收入的關(guān)系式,同時(shí)要注意到函數(shù)的自編來那個(gè)的實(shí)際意義,得到定義域,結(jié)合函數(shù) 性質(zhì)求解最值。屬于中檔題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過點(diǎn)M作MM1丄y軸于M1,過N作NN1⊥x軸于點(diǎn)N1,
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動(dòng)經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習(xí)冊(cè)答案