【題目】已知橢圓的左、右焦點分別為、,且兩焦點的距離為,橢圓上一點與兩焦點構(gòu)成的三角形的周長為.

1)求橢圓的方程;

2)過點的直線交橢圓兩點,若,求直線的方程.

【答案】1;(2.

【解析】

1)設(shè)橢圓的標(biāo)準(zhǔn)方程為,焦距為,根據(jù)題意可得、,可計算出的值,進(jìn)而可得出橢圓的標(biāo)準(zhǔn)方程;

2)由題意可知,直線不能與軸垂直,設(shè)直線的方程為,設(shè)點,將直線的方程與橢圓的方程聯(lián)立,列出韋達(dá)定理,由,得出,利用平面向量數(shù)量積的坐標(biāo)運算結(jié)合韋達(dá)定理求出實數(shù)的值,即可得出直線的方程.

1)設(shè)橢圓的標(biāo)準(zhǔn)方程為,焦距為,

由題意可得,解得,,

因此,橢圓的標(biāo)準(zhǔn)方程為;

2)由題意可知,直線不能與軸垂直,

設(shè)直線的方程為,設(shè)點、,

將直線的方程與橢圓的標(biāo)準(zhǔn)方程聯(lián)立,

消去并整理得,

,解得.

由韋達(dá)定理得,,

,則,且,同理,

,解得,滿足.

綜上所述,直線的方程為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的空間幾何體中,平面平面都是邊長為2的等邊三角形,與平面所成的角為60°,且點在平面上的射影落在的平分線上.

(1)求證:平面;

(2)求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓與圓相切,且與圓相內(nèi)切,記圓心的軌跡為曲線.

(Ⅰ)求曲線C的方程;

(Ⅱ)設(shè)Q為曲線C上的一個不在軸上的動點,O為坐標(biāo)原點,過點OQ的平行線交曲線CM,N兩個不同的點, 求△QMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有兩個零點,則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在以為頂點的五面體中,面為正方形,,,且二面角與二面角都是.

(1)證明:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《流浪地球》是由劉慈欣的科幻小說改編的電影,在2019年春節(jié)檔上影,該片上影標(biāo)志著中國電影科幻元年的到來;為了振救地球,延續(xù)百代子孫生存的希望,無數(shù)的人前仆后繼,奮不顧身的精神激蕩人心,催人奮進(jìn).某網(wǎng)絡(luò)調(diào)查機構(gòu)調(diào)查了大量觀眾的評分,得到如下統(tǒng)計表:

1)求觀眾評分的平均數(shù)?

2)視頻率為概率,若在評分大于等于8分的觀眾中隨機地抽取1人,他的評分恰好是10分的概率是多少?

3)視頻率為概率,在評分大于等于8分的觀眾中隨機地抽取4人,用表示評分為10分的人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】重慶一中將要舉行校園歌手大賽,現(xiàn)有33女參加,需要安排他們的出場順序.(結(jié)果用數(shù)字作答

1)如果3個女生都不相鄰,那么有多少種不同的出場順序?

2)如果女生甲在女生乙的前面(可以不相鄰),那么有多少種不同的出場順序?

3)如果3位男生都相鄰,且女生甲不在第一個出場,那么有多少種不同的出場順序?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,四邊形ABCD是菱形,,BD2

1)若點E,F分別為線段PD,BC上的中點,求證:EF∥平面PAB;

2)若平面PBD⊥平面ABCD,且PDPB,PDPB,求平面PAB與平面PBC所成的銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案