分析 由已知向量的坐標(biāo)求出$\overrightarrow{a}+\overrightarrow$的坐標(biāo),然后利用向量共線的坐標(biāo)表示列式求得m值.
解答 解:∵$\overrightarrow a=(2,-1),\overrightarrow b=(-1,m),\overrightarrow c=(-1,2)$,
∴$\overrightarrow{a}+\overrightarrow=(2,-1)+(-1,m)=(1,m-1)$,
又$(\overrightarrow a+\overrightarrow b)∥\overrightarrow c$,
∴1×2+1×(m-1)=0,解得:m=-1.
故答案為:-1.
點(diǎn)評 平行問題是一個重要的知識點(diǎn),在高考題中常常出現(xiàn),常與向量的模、向量的坐標(biāo)表示等聯(lián)系在一起,要特別注意垂直與平行的區(qū)別.若$\overrightarrow{a}$=(a1,a2),$\overrightarrow$=(b1,b2),則$\overrightarrow{a}$⊥$\overrightarrow$?a1a2+b1b2=0,$\overrightarrow{a}$∥$\overrightarrow$?a1b2-a2b1=0,是基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | $\frac{3}{5}$ | C. | -$\frac{3}{5}$ | D. | -$\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 3 | C. | $\frac{1}{3}$ | D. | 2$\sqrt{2}$-5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com